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 This dissertation focuses on methodology specific to microarray data analyses that 

organize the data in preliminary steps and proposes a cluster analysis method which 

improves the interpretability of the cluster results.  Cluster analysis of microarray data 

allows samples with similar gene expression values to be discovered and may serve as a 

useful diagnostic tool.  Since microarray data is inherently noisy, data preprocessing steps 

including smoothing and filtering are discussed.  Comparing the results of different 

clustering methods is complicated by the arbitrariness of the cluster labels.  Methods for 



xv 
re-labeling clusters to assess the agreement between the results of different clustering 

techniques are proposed.   

Microarray data involve large numbers of observations and generally present as 

arrays of light intensity values reflecting the degree of activity of the genes.  These 

measurements are often two dimensional in nature since each is associated with an 

individual sample (cell line) and gene.  The usual hierarchical clustering techniques do 

not easily adapt to this type of problem.  These techniques allow only one dimension of 

the data to be clustered at a time and lose information due to the collapsing of the data in 

the opposite dimension.  A novel clustering technique based on normal mixture 

distribution models is developed.  This method clusters observations that arise from the 

same normal distribution and allows the data to be simultaneously clustered in two 

dimensions.  The model is fitted using the Expectation/Maximization (EM) algorithm.  

For every cluster, the posterior probability that an observation belongs to that cluster is 

calculated.  These probabilities allow the analyst to control the cluster assignments, 

including the use of overlapping clusters.   

A user friendly program, 2-DCluster, was written to support these methods.  This 

program was written for Microsoft Windows 2000 and XP systems and supports one and 

two dimensional clustering.  The program and sample applications are available at 

http://etd.vcu.edu.  An electronic copy of this dissertation is available at the same 

address.  
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Chapter 1 
 

Introduction 
 
  

The goal of cluster analysis is to identify homogenous subgroups within complex 

datasets.  Cluster analysis attempts to discover natural groupings based on some measure of 

similarity (or dissimilarity) between objects.  If the data can be validly summarized by 

grouping objects, then the group labels may provide enough information to describe patterns 

and similarities in the data (Everitt et al., 2001).  If no patterns or similarities are present in 

the data, only one cluster containing all of the observations should exist.  However, 

hierarchical clustering methods (discussed in Chapter 2) always produce cluster results 

regardless of  whether or not these patterns are present.  Clustering is different from 

classification in the sense that the number of groups and the group labels are  known a priori 

in classification, whereas cluster analysis users must frequently make assumptions 

concerning the number of groups or the group structure (Johnson and Wichern, 1998). 

 There are many cluster analysis techniques available.  When only two variables are 

involved, examining histograms offers some idea of where clusters lie.  Graphical methods 

are also useful for visualizing three dimensional data.   However, higher dimensional data 

quickly become too complex to interpret visually.  As Carl Sagan (1986) wrote, “Humans are 

good at discerning subtle patterns that  are  really  there,  but  equally  so  at  imagining  them  

when they are altogether absent.”  This statement is particularly  relevant  when  visually 

examining clusters in multivariate datasets. 
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Cluster analysis offers formal statistical tools to help to assign observations to 

clusters.  This dissertation develops tools specific to microarray data analysis that organize 

the data in preliminary steps to fine tune cluster analysis.  A new parametric method for 

clustering simultaneously in two dimensions is proposed. 

 
1.1 Microarray Technology                                                                                                                          

Microarrays allow researchers to measure the expression levels of a large number of 

genes simultaneously.  Only about 40 percent of genes on average are expressed at a given 

time (Lockhart, 2002).  The two most commonly used microarray technologies are the 

custom spotted two-color complementary DNA (cDNA) microarray and the oligonucleotide 

microarray (e.g. Affymetrix gene chips).  The primary difference between these designs is 

that the cDNA approach uses a single long stretch of DNA for each gene while the 

Affymetrix approach uses several short oligonucleotides to probe for each gene.  The cDNA 

technology measures the relative gene abundance from two samples while the Affymetrix 

technology measures the absolute gene abundance for a single sample. 

 For the two-color cDNA microarray, the DNA from thousands of genes is spotted 

onto a small glass slide in a regular pattern.  Each spot or probe interrogates for a specific 

gene. This approach was pioneered by Pat Brown’s laboratory at Stanford University 

(Schena et al., 1995; Brown and Botstein, 1999).  Probes are generated by amplifying 

genomic DNA with gene specific primers.  The probes are spotted onto the slide 

automatically by a robot.  Messenger RNA (mRNA) from the samples is purified and reverse 

transcribed to cDNA with fluorescent labeled nucleotides.  If two samples are used (e.g. 

control and treatment), they are labeled separately with the fluorescent dyes Cyanine-3 (Cy3) 
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and Cyanine-5 (Cy5), which emit light in different spectrums (Mujumdar et al., 1993).    The 

spectrums are assigned the colors green (Cy3) and red (Cy5) for convenience.  The labeled 

cDNA is mixed in equal amounts and hybridized to the array.  Unbound cDNA is washed 

away and the array is scanned twice with a laser, generating one red and one green image.  

Once the images are overlaid, spots hybridized with equal amounts of control and treatment 

cDNA are yellow, while spots for genes that are differentially expressed are different shades 

of red or green.  The cDNA microarray design is illustrated in Figure 1.1.  

 
Figure 1.1: cDNA Microarray Design 

 
Various image analysis techniques are employed to identify the red and green 

intensities in the spots along with the surrounding background.  Since the spot size and 

mRNA 

cDNA 

DNA Microarray 
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hybridization properties change for different nucleotide sequences, the measured 

fluorescence intensity cannot be translated to an absolute level of mRNA.   

The ratio between the amount of gene specific mRNA in the two samples is called a 

fold difference.  Historically, a fold difference of two or more was often interpreted as 

evidence that the gene is differentially expressed.  

Due to the variability in spot size and other variations in the printing process, 

normalization techniques are often employed to aid in comparisons across multiple arrays or 

experiments run with different samples or conditions.  Normalization is intended to 

compensate for systematic errors not due to biology, while repeated measurements help to 

control for random errors.  When normalizing data, researchers commonly subtract the 

background intensity from the foreground intensity before  transforming, say by a logarithm.  

The base 2 logarithm is often employed because the intensities are measured on a 16 bit 

scale.  One must be careful not to over-normalize the data.  See Quackenbush (2001) or 

Quackenbush (2002) for a good discussion on microarray data normalization.   

The Affymetrix oligonucleotide microarray design was perfected by David Lockhart 

et al. (1996).  Affymetrix microarrays are packaged in an easy to handle chip as shown in 

Figure 1.2. 

 
Figure 1.2: DNA Chip Illustration 
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Oligonucleotides are placed on glass slides using combinatorial chemistry combined 

with a photolithographic process.  The 25-mer oligonucleotides are used as probes for 

specific genes.  Each is located in a specific area on the array called a probe cell.  The probe 

cells can contain millions of copies of a given oligonucleotide.  Tens to hundreds of 

thousands of different oligonucleotide probes are synthesized on each array.   

 Probe arrays are manufactured in a series of cycles.  Initially, a glass substrate is 

coated with linkers containing photolabile protecting groups.  As shown in Figure 1.3, a 

mask is applied that exposes selected portions of the probe array to ultraviolet light.  The 

light removes the photolabile protecting groups which enables the addition of nucleotide 

material only at the previously exposed sites.  This process is repeated using different masks 

and illumination cycles.  By repeating these steps, a specific set of oligonucleotide probes is 

synthesized with each probe type in a known location.  The completed probe arrays are 

packaged into cartridges like the one shown in Figure 1.2. 

 

 
Figure 1.3: Photolithographic DNA Synthesis 
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Lockhart (2002) lists the following steps in synthesizing DNA for an entire DNA chip.   

1. Spatially-specific illumination 
2. Illuminated oligonucleotides de-protected 
3. Coupling of protected nucleotide 
4. Next illumination pattern applied 
5. Next base coupling step 
6. Process repeated to build entire chip 

 
These steps are illustrated in Figure 1.4.  

 

 
Figure 1.4: DNA Synthesis Process 

 

In the Affymetrix technology, individual oligonucleotides are represented by a 

unique sequence of 25 base pairs.  This sequence is called a 25-mer.  Each gene is usually 

represented by eleven 25-mers on the Hu-133A and Hu-133B chips.  Any set of 25-mers can 

be made in fewer than 100 synthesis steps.  Probes are made by creating a 25-mer which is 

complementary to the reference sequence.  A perfect match probe, or PM, is a 25-mer which 

is the exact complement of the reference sequence.  A mismatch probe, or MM, is a 25-mer 

which is the same as the PM except for a base change in the middle (13th) base.  The purpose 
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of the MM probe design is to measure non-specific binding and background noise.  Most 

expression measures are based on differences of PM and MM (PM-MM).  A probe pair 

refers to a (PM, MM) pairing.  Eleven probe pairs make up the typical probe set.  The 

individual probe cells are square shaped.  When the microarray is “read”, the resulting image 

contains about 100 pixels per probe cell.  The eleven probe cell PM and MM intensities are 

combined to form an expression level for a probe set.  Bolstad et al. (2003) propose a 

different normalization method which attempts to remove the obscuring variation.   

Both the cDNA and Affymetrix microarray designs have merit.  The long DNA 

strands in the cDNA design are more specific than oligonucleotides.  However, Affymetrix 

chips have many oligonucleotides per gene compared to just a few spots per gene on cDNA 

arrays.  Affymetrix arrays have a mismatched control for every oligonucleotide. These 

mismatches may or may not be informative.  Affymetrix software uses robust weighting 

techniques to combine the signals of the PM and MM oligonucleotide pairs into a probe set 

expression summary.  However, much of this information is proprietary.  The probe 

sequences only recently became publicly available (Lockhart, 2002).   Affymetrix 

experiments have a single color readout versus the two colors used in cDNA experiments.  

The cDNA experiments are cheaper to run and the equipment is more readily available.  

Affymetrix experiments are arguably more reliable but the equipment and gene chips cost 

more (although the costs are constantly falling).  Finally, Affymetrix microarrays are much 

denser and can handle many more genes simultaneously than cDNA microarrays. 
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1.2 Computational Complexity 

In most cluster analysis applications, the user knows enough about the problem to be 

able to distinguish “good” clusters from “bad” clusters.  One option is to list all of the 

possible groupings and to choose the best clusters based on some criteria (such as 

minimizing variability) for further study.  However, this approach becomes computationally 

infeasible when the number of genes or groups is large. 

 For example, suppose that a researcher is interested in studying smoking in the 

United States population and that one demographic variable is chosen from a data set 

containing 25 smokers.  There is only one way to form a cluster of size one.  There are 

16,777,215 ways to partition the subjects into two clusters (of varying sizes).  There are 

111.41 10x ways to partition the patients into three clusters (of varying sizes).  In general, the 

number of ways of sorting n objects into k nonempty groups is a Stirling number of the 

second kind given by Johnson and Wichern (1998): 

 

 ( )
0

1 1 .
!

k k j n

j

k
NC j

jk
−

=

  
= −  

  
∑  (1.1) 

 
The SAS code for these calculations is given in Appendix 1.1.  Clearly, listing all of the 

possible clusters is not practical even for this small example.  The complexity quickly 

increases as the number of variables and subjects increases.  Cluster analysis does not seek to 

find the absolute best cluster assignment by enumerating all NC possibilities.  It only strives 

to find cluster assignments that are useful in practice by user defined criteria for  

homogeneity of units within clusters. 
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1.3 Clustering 

The goal of clustering is to group “similar” observations together.  In the usual 

clustering application, each object belongs to a single cluster and the complete set of clusters 

contains all of the objects.  However, in some scientific applications, allowing overlapping 

clusters is useful.  For example, a non-overlapping structure for clusters may not be 

appropriate for microarray data analysis, as there is no reason to assume that cancer causing 

genes can only be active in one type of cancer. 

Everitt et al. (2001) give the usual form of the data for cluster analysis applications as 

an   n x p matrix, X, containing the observations describing each object to be clustered. 

 

 

11 12 1

21 22 2

1 2

p

p

n n np

x x x

x x x

x x x

 
 
 =  
 
  

X  (1.2) 

 
The entry ijx in X gives the value of the thj variable for object i.  The variables may be a 

mixture of continuous, ordinal, or nominal types and could also be missing.  Most clustering 

methods reduce X to a   n x n  symmetric matrix of distances or similarities (see Chapter 2 for 

more details).  Similarity measures scaled to fall between 0 and 1 convert to distance 

measures by subtracting them from 1.  Some clustering algorithms require the number of 

clusters to be specified in advance, which is often unknown and thus can be problematic.     

Suppose that a researcher wishes to look for groups of people having a similar IQ in a 

sample of 100 individuals.  Since traditional clustering is based on a distance (or similarity) 
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measurement, this analysis is based on a 100x100 symmetric matrix of distances having 

( )1 100 101 5050
2 2

n n x+
= = unique entries.  The result of running the cluster analysis is 

clusters of individuals having “similar” IQs.  Any clusters found in this crude analysis could 

be further examined to see if there are demographic or socioeconomic commonalities among 

the groups. 

There are certain procedures common to most clustering algorithms.  Cowgill (1993) 

lists the following general steps that are involved in a cluster analysis. 

1. The objects to be clustered must be selected.  For convenience in data collection, 
analyses are typically performed on a population sample. 

2. The variables to be used in the cluster analysis must be selected.  The variables must 
contain enough information to permit the clustering of the objects.  The proportion of 
relevant information to random error (noise) should be kept to a minimum. 

3. The researcher must decide whether or not to standardize the raw data.  Additionally, 
the decision must be made whether to categorize continuous data into finite groups. 

4. A distance (or similarity) measure must be chosen. 
5. A clustering technique must be chosen. 
6. The number of clusters must be ascertained. 
7. The researcher must interpret the meaning of the clusters in terms of the research 

objectives. 
 
 
1.4 Historical Development of Cluster Analysis 
 

Clustering techniques were first discussed in the social science literature in 1930 

(Blashfield and Aldenderfer, 1978).  Early interest in clustering biological organisms was 

sparked by the publication of the classic text Principles of Numerical Taxonomy by Sokal 

and Sneath (1963).  However, clustering techniques have only found widespread application 

in the past 25 years.  Many of the clustering techniques used today were developed in the 

1950’s and 1960’s and are now feasible for a much wider user base due to the rapid growth 
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of computer speed.  A few of these techniques are single linkage (Sneath, 1957), average 

linkage (Sokal and Michener, 1958), complete linkage (Sorensen, 1948), and Ward’s method 

(Ward, 1963).  These techniques are discussed more completely in Chapter 2.  Chapter 4 

introduces mixture model based clustering.  Cluster analysis is being used in diverse fields 

such as agriculture, archaeology, astronomy, business, and psychiatry.  Data mining is one of 

the fastest growing approaches for pattern recognition and makes use of a wide variety of 

clustering techniques. 

 
1.5 Multidimensional Clustering 

 Current clustering techniques require the selection of a dimension to cluster across.  

For example, suppose that a researcher wishes to analyze data from a microarray experiment.  

Let the columns of the data represent samples and the rows represent genes.  The goal is to 

find clusters of genes which have similar gene expression patterns in a given cluster of 

samples.  Many studies of this type cluster across samples which results in clusters of 

“similar” samples.   

The researcher’s basic question regards discovering relationships between genes and 

samples.  Choosing one dimension (e.g. the samples) of the data to cluster across effectively 

ignores data regarding the relationships between the genes and instead focuses only on the 

differences in aggregate gene expression between the samples.  Thus,  information is lost due 

to this artificial choice of a clustering dimension.   
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1.6 Clustering Microarray Data 

An established cDNA microarray data set from the National Cancer Institute is made 

up of a two dimensional array having 6,167 genes across one axis and 60 cell lines across the 

other axis (Ross et al., 2000).  The observations in the grid are gene expression values.  The 

cluster analysis of microarray data represents a huge computational challenge due to the 

large number of observations.   

 As shown in Figure 1.5, analyzing and interpreting a microarray experiment involves 

several steps.   

 
Biological Question

Experimental Design

Microarray Experiment

Image Analysis

Normalization

Clustering

Discrimination

Estimation

Testing

Biological Verification

Analysis

 
Figure 1.5: Steps in the Analysis of Microarray Data 

 

This dissertation focuses on the analysis step (bolded in Figure 1.5) and applies 

cluster analysis techniques.  We assume that the gene expression values reported in the 

experiments were appropriately obtained.  Cluster analyses are one type of analysis that may 
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be performed on microarray data.  It is noted, however, that the image analysis and 

normalization procedures applied may greatly influence the results.  As always, good 

laboratory practices including a complete protocol can help to control noise and to improve 

the interpretability of the results.  Any conclusions drawn from the analysis stage should be 

subjected to biological verification and interpretation. 

Brazma et al. (2001) proposed guidelines for presenting and exchanging microarray 

data, known as the Minimum Information About a Microarray Experiment (MIAME) 

standard.  The goal of these guidelines is to outline the minimum information required to 

interpret unambiguously and potentially reproduce and verify an array based gene expression 

monitoring experiment.  The MIAME standards are widely used and continually updated. 

The current version is found at http://www.mged.org/Workgroups/MIAME/miame_1.1.html.  

Medical applications of microarray data analysis may seek to identify genes involved 

in disease by comparing gene expression values between tissues of healthy and diseased 

individuals.  This is often accomplished by supervised learning techniques for class 

comparison and class prediction.  Alternatively, unsupervised learning methods are useful 

for class discovery.  Moreover, patterns of genes specifically induced in pathological tissues 

may be identified using clustering techniques.  Finding genes that are common to specific 

groups of tumors may prove useful.  Such findings could offer medical researchers a starting 

place in their quest to improve the reliability of cancer diagnosis and treatment effectiveness.  

The possibility of gene targeted treatment requires one  to more accurately understand the 

underlying genetic and environmental factors which contribute to the development of cancer.  
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Cluster analysis is one tool in a growing arsenal of research weapons for better 

understanding these relationships.   

Cluster analysis of microarrays lends itself to other applications as well.  Using 

microarrays in functional genomic studies offers clues to discovering gene function through 

the examination of gene expression patterns.  Microarrays are also used to study  treatment 

effects on metabolic and signaling pathways.  Eventually, researchers hope to be able to 

determine the structure of regulatory gene networks by analyzing expression data.  Finally, 

microarrays are used  in comparative genomic studies in the hopes of identifying genetic 

differences between closely related species. 

 
1.7 Research Focus 

This dissertation focuses on developing tools specific to microarray data analysis that 

organize the data in preliminary steps to fine tune the cluster analysis and improve the 

interpretability of the cluster results.  One dimensional non-parametric clustering techniques 

are reviewed.  Issues such as smoothing and gene filtering are examined.  Methods for 

assessing the agreement between the results of different clustering techniques are addressed.  

One dimensional parametric clustering techniques are discussed.  A parametric algorithm 

that examines both dimensions of the data simultaneously in order to establish clusters is 

developed.  A statistical framework is developed for this algorithm.  A user friendly 

program, 2-DCluster, implements the algorithm.  Finally, suggestions for future research in 

this area are given along with a brief review of other methods currently in vogue and a 

summary of the results contained in this dissertation. 
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Chapter 2 
 

Smoothing, Filtering, and Non-Parametric Clustering 
 
 

2.1 Introduction  

For microarray data, clustering methods are used to identify genes that have similar 

expression patterns with respect to a sample.  In this dissertation, a brief account of the 

common clustering methods and the issues related to their application is given.  One of the 

primary requirements for any clustering method is the specification of a “distance” measure or 

a “similarity” measure.  Different distance and similarity measures are defined and discussed.  

Several unidimensional clustering algorithms are reviewed.  In some applications, the 

similarity measure is obtained by comparing a predefined profile to the profile observed for 

each gene.  This dissertation introduces such a data set from Chu et al. (1998) and reviews the 

prior analyses performed on these data.  A new approach based on a smoothing mechanism is 

proposed for generating and comparing the profiles.  Smoothing techniques applied prior to 

filtering along with several filtering techniques are discussed.  Chu’s (1998) data is reanalyzed 

using the new method.  Finally, the smoothed and unsmoothed clustering results are compared 

graphically using the profile graphs. 

 
2.1.1 Microarray Data Description 

The amount and scope of microarray data is ever increasing.  Microarray experiments 

are becoming cheaper and easier to perform with the help of popular designs such as the dye-
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swap, reference, and loop designs (Kerr and Churchill, 2001).  As discussed in Chapter 1, the 

two major platforms on which microarray experiments are performed are the Affymetrix and 

complementary DNA (cDNA).  The focus of this chapter is on the analysis of cDNA arrays. 

In the case of cDNA microarrays, mRNA is extracted from the cells and hybridized to 

form the cDNA samples.  These samples are usually labeled with a red (Cy3) or a green (Cy5) 

dye.  Through a highly automated process, these samples are placed, or spotted, onto the 

microarrays.  The identity of the spots is retained by keeping track of their position on the 

array.  Standard identifying characteristics include the sample (e.g. the cell type or variety) and 

the gene from which the sample came.  Each sample is typically spotted multiple times on an 

array in order to help to control technical variability.  The microarrays are “read” by shining a 

laser through a particular spot on the array and recording a fluorescence value.  The 

fluorescence value is indicative of the degree of gene expression activity for that sample.   

Image analysis is the process of identifying signal and background from a scanned 

image.  A common measure of the signal is foreground – background.  The use of this 

background corrected value helps to separate the signal from the background.  Normalization 

removes artifacts of non-biological origin such as print-tip effects, etc. (Quackenbush, 2001; 

Quackenbush, 2002).   Typical analyses performed on the background corrected and 

normalized fluorescence values include cluster and classification analyses which may attempt 

to find genes which are expressed in specific biological processes.  For more information on 

microarray technology, see Section 1.1.   
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2.1.2 The Use of Profiles in Microarray Data Analysis 
 
 In some experiments, researchers have prior knowledge about gene function relating to 

some process of interest.  For example, suppose that several genes are known to influence a 

given biological process.  Further suppose that these genes may be subdivided into groups 

according to which areas of biological activity they influence.  Assume that the researcher is 

interested in using a microarray experiment to find additional genes that may be involved in 

the process.  Standard cluster or classification analyses considering these genes could be 

performed in order to help group genes having similar expression values (Everitt et al., 2001).  

Ideally, the resultant groups would contain genes involved in similar biological processes.  

However, by including known information regarding gene function, one can perhaps improve 

the interpretability of the gene clusters.  In the literature, some researchers (Chu et al., 1998; 

Kerr and Churchill, 2001) performed cluster analyses using profiles generated by known 

genes.  In the case of Kerr and Churchill, the profile generating genes are placed into seven 

groups based on seven time points in the yeast sporulation process.  Once the genes are 

grouped, average gene expression profiles are derived for each group.  Other genes of 

unknown function from the microarray experiment are assigned to one of these profiles based 

on clustering using some distance or correlation metric which relates the gene of unknown 

function to the profile.  The metric (1 - the Pearson correlation measure) is often used as the 

dissimilarity measure in performing profile based clustering of genes. 

 
2.1.3 Gene Filtering 

 Many of the genes studied in a microarray experiment may not match well with any of 

the profiles.  Including too many irrelevant genes can make the cluster results more noisy and 
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thus reduces the chance of finding the small subsets of genes that may be involved in 

regulating specific processes.  In order to improve the signal to noise ratio, gene filtering 

methods are commonly employed prior to running analyses.  Many of these techniques are 

based on minimization of variance criteria.  More advanced techniques include modeling 

approaches such as those discussed in Kerr and Churchill (2001), Rocke and Durbin (2001), 

and Wolfinger et al. (2001).  One must be very careful not to choose a filtering technique that 

is so broad that it throws away genes of interest. 

 
2.2 Similarity Measures 

 In order to identify clusters of observations that may be present in data, it is critical to 

have some measure of how “close” the observations are to each other.  This “closeness” is 

quantified using a distance measure.  A metric, ijδ , fulfills the following triangle inequality: 

 
 ij im jmδ δ δ+ ≥  (2.1) 

 
for the pairs of individuals ( ),i j , ( ),i m , and ( ),j m  (Everitt et al., 2001) where 

0 iff ij i jδ = =  and ij jiδ δ= .  The δ ’s are always non-negative.  A distance matrix may be 

defined where Equation 2.1 holds for all triplets ( ), ,i j k  and 0 ii iδ = ∀ .  It can be seen from 

Equation 2.1 that the distance between individuals i and j is the same as that between j and i 

and that if two points i and j are close together then k must have a similar proximity to both of 

them.  The Euclidean distance is one such metric. 

Another measure known as the similarity measure is defined so that any two 

individuals are “close” when their similarity measure is large (or their dissimilarity measure is 
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small).  A similarity measure may be defined by reversing the inequality in Equation 2.1 and 

keeping the other conditions the same.  Choosing a similarity measure is subjective and could 

vary according to the experiment (Johnson and Wichern, 1998).  Important considerations 

when picking a measure include the nature of the variables (discrete, continuous, binary), 

scales of measurement (nominal, ordinal, interval, ratio), and subject matter knowledge. 

 
2.2.1 Similarity Measures for Binary Data 

A large number of similarity measures have been proposed for binary data.  Table 2.1 

illustrates the general form of this cross-classification. 

 
Table 2.1: Counts of Binary Outcomes for Two Individuals 

  Individual i  
 Outcome 1 0 Totals 

1 a b a + b Individual j 0 c d c + d 
 Totals a + c b + d p = a + b + c + d 

 
 
Table 2.2 gives a sample of the most commonly used similarity measures for binary data.   

A more extensive list can be found in Gower and Legendre (1986).  Individual similarity 

measures are used to build an ( )1 / 2n n +  dimensional similarity (or distance) matrix, where n 

is the number of observations that need to be clustered.  The difference between the various 

similarity measures in Table 2.2 centers around how the 1-1 and the 0-0 matches are treated.  

For example, when comparing two genes in microarray data, if a 1 represents a gene 

expression value above the background level, the researcher is not as interested in the 0-0 

matches as he/she would be in the 1-1 matches.  This is because the 1-1 matches indicate that 

both genes are expressed above the background level simultaneously and thus may be involved 
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in similar biological functions.  The investigator must decide on the relative importance of the 

0-0 and the 1-1 matches based on the specific application.   

 
Table 2.2: Similarity Measures for Binary Data 

Measure Rationale Formula 
Matching 
Coefficient 

Equal weights for 1-1 matches and 0-
0 matches. ij

a ds
p
+

=  

Jaccard Coefficient 
(Jaccard, 1908) 

No 0-0 matches in the numerator or 
the denominator.  (The 0-0 matches 
are treated as irrelevant.)  

ij
as

a b c
=

+ +
 

Rogers and 
Tanimoto (1960) 

Double weight for unmatched pairs. 
( )2ij
a ds

a b c d
+

=
+ + +

 

Sokal and Sneath 
(1963) 

No 0-0 matches in the numerator or 
the denominator.  Double weight for 
unmatched pairs. 

( )2ij
as

a b c
=

+ +
 

Gower and Legendre 
(1986) 

Half weight for unmatched pairs. 

( )1
2

ij
a ds

a b c d

+
=

+ + +

Gower and Legendre 
(1986) 

No 0-0 matches in the numerator or 
the denominator.  Half weight for 
unmatched pairs. ( )1

2

ij
as

a b c
=

+ +
 

 

2.2.2 Distance Measures for Continuous Data 

 The “difference” between two continuous observations is represented by two classes of 

measures: distance measures and correlation based measures.  Distance measures, represented 

by ijd , allow the interpretation of dissimilarities as functions of physical distances.  

Correlation measures, represented by ijδ , are not straightforward functions of physical 

distance but are a type of similarity measure.  Due to their simplicity in interpretation, distance 

measures are often preferred to similarity measures for continuous data.  Table 2.3 shows 

several distance and correlation measures for continuous data (Everitt et al., 2001).   
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Table 2.3: Distance and Correlation Measures for Continuous Data 
Measure Formula 
Euclidean Distance 

( ) ( ) ( )2
1

pT
ij i j i j ik jk

k
d x x x x x x

=
= − − = −∑  

City Block Distance 

1

p
ij ik jk

k
d x x

=
= −∑  

Minkowski Distance 1

1
,  1

p rr
ij ik jk

k
d x x r

=

 
 = − ≥
 
 
∑  

Pearson Correlation ( )

( )( )

( ) ( )

. .
1

22
. .

1 1

. .
1 1

1 / 2 where

 and

1 1x      

ij ij
p

i jik jk
k

ij p p
i jik jk

k k
p p

i jik jk
k k

x x x x

x x x x

x x x
p p

δ φ

φ =

= =

= =

= −

− −

=

− −

= =

∑

∑ ∑

∑ ∑

 

Legend: p = number of variables 
x = vector of continuous responses for a given observation 
 
 

2.3 Hierarchical Clustering Methods 

There are two basic types of hierarchical clustering methods.  The first type is the 

agglomerative hierarchical method.  These methods start with as many clusters as objects and 

merge objects into groups according to their similarities (or dissimilarities).  In the first 

iteration, the most similar objects are grouped together and merged.  In the final iteration, all of 

the objects are contained in a single large cluster.  Sometimes the objects in the final cluster are 

quite dissimilar. 
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 The second type of hierarchical clustering method is the divisive hierarchical method.  

These methods start with all of the objects contained in one large cluster.  At each iteration, the 

groups are subdivided or kept in the same cluster based on how close the individuals within 

clusters are in terms of their similarity measures.  Eventually, there are as many clusters as 

individuals.   

 
2.3.1 Agglomerative Hierarchical Clustering Methods 

 Agglomerative clustering methods are among the most widely used clustering 

techniques.  These methods partition the data such that the first partition consists of n clusters, 

each containing a separate observation, and the last partition consists of a single cluster 

containing all n observations.  At each iteration, the methods fuse the observations (or the 

groups of observations) which are the most similar.  The methods differ in how the similarities 

(or the distances) are calculated between the clusters. 

The application of the methods is quite similar.  Johnson and Wichern (1998) give the 

general steps in agglomerative clustering algorithms for grouping N objects as: 

1. Start with N clusters, each containing a single entity and an NxN symmetric matrix of 
distances (or similarities) D = ikd . 

2. Search the distance matrix for the nearest (i.e. most similar) pair of clusters.  Let the 
distance between “most similar” clusters U and V be uvd . 

3. Merge clusters U and V.  Label the newly formed cluster (UV).  Update the entries in 
the distance matrix by (a) deleting the rows and columns corresponding to clusters U 
and V and (b) adding a row and column giving the distances between cluster (UV) and 
the remaining clusters. 

4. Repeat steps 2 and 3 a total of N-1 times.  Recall that all of the objects will be in a 
single cluster at the termination of the algorithm.  Record the identity of clusters that 
are merged and the levels at which the merges take place. 
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There are various ways of calculating distances between an object and a cluster or between 

two clusters for agglomerative clustering methods.  These clustering techniques are discussed 

below and include single linkage, complete linkage, average linkage, and Ward’s method.  

  
Single Linkage 

 The inputs to a single linkage algorithm are distances or similarities between pairs of 

objects.  This clustering method is also known as the nearest neighbor method because clusters 

are formed from individual objects by merging the nearest neighbors, or those objects with the 

smallest distance or largest similarity between each other.  Single linkage was first proposed by 

Sneath (1957). 

 The single linkage algorithm is illustrated with an example.  The data for this example 

is from a hypothetical microarray experiment.  The goal of this experiment is to group genes 

having similar expression patterns across three tumor cell lines.  The fluorescence values are 

shown in Table 2.4. 

 
Table 2.4: Data from an Example Microarray Experiment  
Gene Number Cell Line 1 Cell Line 2 Cell Line 3 
1  0.095516  0.077364 -0.250570 
2 -0.075721  0.499687  0.045323 
3  0.195900  0.281033  0.012837 
4 -0.267606 -0.301030  0.993877 
5  0.338457  0.318063  0.526339 

 
 
Figure 2.1 gives a distance matrix containing Pearson correlation dissimilarity measures, which 

are described in Section 2.2 as (1 – the usual pair wise Pearson correlation coefficient). 
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D = { }ikd =  

        1           2           3          4           5
0.0001
0.727 0.0002
0.065 0.404 0.0003
1.998 1.339 1.957 0.0004

5 1.991 1.400 1.974 0.002 0.000

 
 
 
 
 
 
 
 

 

Figure 2.1: Distance Matrix for Single Linkage Microarray Example, First Iteration 
 

Notice that the element with the smallest off-diagonal value has a box drawn around it. 

Since ( ) 54
,

min 0.002ik
i k

d d= = , observations 4 and 5 are merged together to form cluster (4 5).  

The distances between this new cluster and all existing clusters must be calculated.  These 

“nearest neighbor” distances are: 

( ) [ ] [ ]41 5145 1 min , min 1.998,1.991 1.991d d d= = =  

( ) [ ] [ ]42 5245 2 min , min 1.339,1.400 1.339d d d= = =

( ) [ ] [ ]43 5345 3 min , min 1.957,1.974 1.957d d d= = =  

Plugging in these new values yields the distance matrix shown in Figure 2.2. 

 

D = { }ikd =  

         (4 5)         1           2          3
0.000(4 5)
1.991 0.0001
1.339 0.727 0.0002

3 1.954 0.065 0.404 0.000

 
 
 
 
 
  

 

Figure 2.2: Distance Matrix for Single Linkage Microarray Example, Second Iteration 
 

Once again, the element with the smallest off-diagonal value has a box drawn around 

it.  Observations 1 and 3 are merged together to form cluster (1 3).  This process continues 

until all of the observations are contained in one cluster of size N.  The output of a cluster 
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analysis is typically displayed in a graph called a dendrogram.  Figure 2.3 shows the output of 

the single linkage clustering microarray example. 

 

 
Figure 2.3: Results of Single Linkage Cluster Analysis for the Microarray Example 

 
 

The distance between the nodes in the dendrogram represents how uniform the cluster 

members are.  Clusters having small distances between nodes are more uniform, or “tighter”.  

Notice that at the bottom of the tree each individual is contained within its own cluster and at 

the top of the tree, or “root cluster”, all of the objects are placed into the same cluster.  The 

analyst must decide at which level of clustering to interpret the data.  Further investigation of 

the relationships discovered using cluster analysis is often warranted.  One problem with the 

single linkage method is that it tends to produce unbalanced and straggly clusters, especially in 

large data sets, and does not take cluster structure into account (Everitt et al., 2001). 

 
Complete Linkage 

Complete linkage clustering is similar to single linkage clustering, except that at each 

stage the clusters are formed by choosing the most distant observations from each other.  This 

method ensures that all of the items in a cluster are within some maximum distance (or 
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minimum similarity) of each other.  This method was first proposed by Sorensen (1948).  

Since this method proceeds identically to the single linkage algorithm with the exception of 

updating the distance matrix based on the maximum distances, the algorithm is not discussed 

in detail.  Complete linkage clustering using the distance matrix first presented in Figure 2.1 

yields the dendrogram shown in Figure 2.4.  Observe by comparing Figures 2.3 and 2.4 that, 

for this example, application of the single and complete linkage methods results in identical 

clusters.  This is not always the case. 

 

 
Figure 2.4: Results of Complete Linkage Cluster Analysis for the Microarray Example 

 

 One must be careful when selecting the type of cluster analysis to use and perhaps 

perform the analysis using multiple clustering algorithms for the sake of comparison.  A 

problem with the complete linkage method is that it tends to find compact clusters with equal 

diameters and does not take into account cluster structure (Everitt et al., 2001). 

 
Average Linkage 

 The average linkage clustering technique proceeds very similarly to the single and 

complete linkage clustering techniques.  The objects are clustered according to the smallest 
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distances (or largest similarities) calculated using Equation 2.2.  This method was first 

proposed by Sokal and Michener (1958).   

The difference in the average linkage method lies in how to calculate the distances 

between a newly formed cluster and all of the original clusters.  Suppose that a new cluster, 

(UV), has been formed based on the minimum distance criteria.  In the average linkage 

algorithm, the distance between cluster (UV) and a cluster W is found by the formula: 

 

 ( )
( )

ik
i k

UV W
WUV

d

d
N N

=
∑∑

 (2.2) 

 
 where ikd is the distance between object i in the cluster (UV) and object k in cluster W, and 

( )UVN and WN are the numbers of items in clusters (UV) and W, respectively. 

 The average linkage clustering method is applied to the microarray example presented 

in Table 2.4.  This results in the dendrogram presented in Figure 2.5.  Notice that these results 

are identical to the previous results.  This is not always  the case.  A limitation of the average 

linkage clustering technique is that it tends to join clusters with small variances (Everitt et al., 

2001).  However, it represents a good compromise between the single and complete linkage 

clustering methods.  Additionally, average linkage takes cluster structure into account and is 

relatively robust. 
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Figure 2.5: Results of Average Linkage Cluster Analysis for the Microarray Example 

 

Ward’s Method 
 
 Ward (1963) first proposed this popular method which merges clusters based on the 

size of an error sum of squares criterion.  This error sum of squares criterion is based on the 

amount of information lost when two groups are joined.  Loss of information increases the 

error sum of squares (ESS).  This algorithm, as described in Johnson and Wichern (1998), is 

given below. 

 For a given cluster k, let kESS be the sum of squared deviations of every item in the 

cluster from the cluster mean.  If there are currently C clusters, ESS is defined as 

1

C
k

k
ESS ESS

=
= ∑ .  At each step in the analysis, the union of every possible pair of clusters is 

considered, and the two clusters whose combination results in the smallest increase in ESS are 

joined.  Initially, each cluster consists of a single item, thus ESS = 0.  When the algorithm 

terminates and all of the clusters are combined into a single group of N items, 
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( ) ( )'

1

N
j j

j
ESS x x x x

=
= − −∑ , where jx  is the data from the thj item and x  is the mean of all 

of  the items.  Applying Ward’s method to the microarray data presented in Table 2.4 results in 

a clustering identical to the average linkage method results.  This is not always the case. 

 Ward’s method is based on the notion that the clusters of observations are expected to 

be elliptically shaped.  It assumes that points can be represented in Euclidean space, tends to 

find spherically shaped clusters of the same size, and is sensitive to outliers (Everitt et al., 

2001).  Monte Carlo simulation studies have demonstrated that Ward’s method is as good or 

better than other hierarchical techniques (Kuiper and Fisher, 1975; Blashfield, 1976; Mojena, 

1977; Milligan, 1980; Breckenridge, 1989), particularly under high noise conditions. 

 
2.3.2 Divisive Hierarchical Clustering Methods 

 Divisive hierarchical clustering methods work in the opposite way of agglomerative 

hierarchical clustering methods in the sense that they start with one cluster containing all of the 

objects and successively split this cluster into smaller clusters.  According to Everitt et al. 

(2001), agglomerative methods are much more commonly used than divisive methods.  

However, Kaufman and Rousseeuw (1990) point out that divisive clustering methods have the 

advantage of being able to see the structure in the data as it is discovered.  Divisive clustering 

methods are not the focus of this chapter and more information about them may be found in 

Everitt et al. (2001). 
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2.3.3 Final Comments on Hierarchical Clustering Methods 

There are several items that one must consider when using hierarchical clustering 

methods.  The first of these is the choice of the clustering method.  Choices also must be made 

regarding which distance or similarity measure to use.  One source of frustration in applying 

clustering methods is that different clustering techniques can lead to quite different results.  

Thus, interpretation of the cluster results is often difficult.  Generally, an investigator chooses a 

level of clustering in the hierarchy that seems to make sense in the context of the problem.  

Like all statistical techniques, there are choices and tradeoffs to be considered when selecting a 

method to use. 

In some applications, it may make sense to allow individuals to be contained in more 

than one cluster.  For example, if noisy data is present, there may not be enough information to 

obtain an adequate separation of clusters.  In cases like this, the best the researcher can do may 

be to say that an individual belongs to cluster A and/or cluster B.  Forcing these individuals 

into one cluster or the other could mask an existing relationship.  Another possible problem 

arises from the fact that once divisions or fusions are made, they cannot be reversed.  Finally, 

hierarchical clustering methods always produce a clustering result regardless if there is any 

actual pattern present in the data.  

 
2.4 Nonhierarchical Clustering Methods 

 Nonhierarchical clustering methods do not force a hierarchical clustering structure and 

thus allow for data lacking any inherent hierarchy.  Many of these methods require the user to 

specify in advance the number of clusters desired in the output.  One way to deal with this 
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limitation is to do several analyses with different numbers of clusters and see which clustering 

scheme results in the minimal variance of its members (Everitt et al., 2001). 

 
2.4.1 Optimization Based Clustering Methods 

Once a clustering criterion has been chosen, it needs to be repeatedly applied to assign 

the objects to clusters.  The best way to do this is to calculate the value of the clustering 

criterion for every possible partition and to choose the partition having the best value.  

However, as discussed in Section 1.2, this is not computationally feasible due to the huge 

number of possible clusters in even a moderately sized problem.  Liu (1968) gives the 

following formula for calculating the number of possible partitions of n objects into g groups: 

 

 ( ) ( )
1

1, 1  .
!

g
g m n

m
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N n g m

mg
−

=

 
= −  

 
∑  (2.3) 

 
For example, N(10,5) = 42,525.  Calculating all of the possible partitions for a problem of this 

size seems feasible.  However, consider a realistic problem of clustering 60 cancer cell lines 

into 4 clusters.  N(60,4) = 345.54 10x .  Calculating all of these possibilities is not possible on 

today’s computers in any reasonable length of time.  

Algorithms which search through the  possible cluster assignments and keep only the 

ones that improve the value of the clustering criterion are called hill-climbing algorithms.  

These algorithms have some possible limitations, such as finding local maximums or 

minimums or not converging quickly enough.  However, hill-climbing algorithms are widely 
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used in optimization.  These techniques share common steps described by (Everitt et al., 2001) 

as: 

1. Find some initial partition of the n objects into g groups. 
2. Calculate the change in the clustering criterion produced by moving each object from 

its own group to another group. 
3. Make the change which leads to the greatest improvement in the value of the clustering 

criterion. 
4. Repeat the previous two steps until no move of a single object causes the clustering 

criterion to change. 
 
One of the most commonly used optimization techniques for clustering is the k-means method, 

which is discussed below. 

 
K-means Clustering Algorithm 

 MacQueen (1967) developed an algorithm which assigns each item to the cluster 

having the nearest mean.  This algorithm is called the k-means algorithm, and remains one of 

the most popular clustering algorithms.  Johnson and Wichern (1998) described the steps of the 

k-means algorithm as: 

1. Partition the items into C initial clusters. 
2. Proceed through the list of items, assigning an item to the cluster whose centroid is 

nearest.  A distance measure must be chosen.  Recalculate the centroid for the cluster 
receiving the new item and for the cluster losing the item. 

3. Repeat step 2 until no more reassignments take place. 
 

This algorithm is illustrated with an example using the microarray data from Table 2.4.  

Suppose that the investigator wishes to partition the data into 3 clusters.  For illustration 

purposes, the Euclidean distance measure is used.  The initial partition is arbitrarily chosen to 

be (1,3), (2,4), and (5).  These partitions along with the associated mean vectors are shown in 

Table 2.5. 
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Table 2.5: Initial Partitions for the K-means Algorithm Microarray Example 
Cluster Individual Mean Vector 
1 1, 3 (0.146, 0.179, -0.119)
2 2, 4 (-0.172, 0.099, 0.520)
3 5 (0.338, 0.318, 0.526) 

 

Now the distance from each individual to each cluster’s mean vector is calculated.  If 

the distance is smaller than that of the individual to the current cluster, the individual is 

reassigned to the closer cluster.  This process is illustrated below.   

First, the distance between the first individual and the cluster means is calculated. 

[ ] ( ) ( ) ( )
[ ]
[ ]

2 2 22

2

2

(1), (1,3) 0.095 0.146 0.077 0.179 0.251 0.119 0.030

(1), (2, 4) 0.666

(1), (5) 0.721

d

d

d

= − + − + − + =

=

=

 

The distance of 0.030 between cluster (1) and cluster (1,3) is the smallest of the three 

distances, so (1) is already contained in the correct cluster at this stage.  Now the distance 

between (2) and the cluster means is calculated. 

[ ]
[ ]
[ ]

2

2

2

(2), (1,3) 0.179

(2), (2, 4) 0.396

(2), (5) 0.436

d

d

d

=

=

=

 

Individual (2) is closest to cluster (1,3), so a new cluster (1,2,3) is formed.  Table 2.6 is 

recalculated for these new clusters.   

 
Table 2.6: Partitions for the K-means Algorithm Microarray Example, Second Iteration 

Cluster Individual Mean Vector 
1 1, 2, 3 (0.072, 0.286, -0.064) 
2 4 (-0.268, -0.301, 0.994)
3 5 (0.338, 0.318, 0.526) 
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The process iterates, with the distance between each individual and the clusters being 

calculated and the cluster assignment based on minimizing this distance.  At termination, the 

final cluster assignments for the k-means method were (1,2,3), (4), and (5).  The dendrogram is 

given in Figure 2.6. 

 

 
Figure 2.6: Results of K-Means Cluster Analysis for the Microarray Example 

 
 
2.4.2 Other Techniques 

 There are a variety of nonhierarchical techniques available for cluster analysis that do 

not fall into a convenient grouping scheme.  Many of these techniques are specialized and have 

computer science roots in areas such as pattern recognition and artificial intelligence.  Several 

of these techniques, such as self organizing maps and genetic algorithms, are discussed briefly 

in Chapter 6. 

 
2.5 Introduction to Chu et al. (1998) Microarray Data  

 The data for this analysis are from the experiment reported in Chu et al. (1998).  In this 

experiment, spotted cDNA microarrays containing 97% of the known genes of Saccharomyces 
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cerevisiae (yeast) were used to study gene expression during meiosis and spore formation.  

Yeast cells were transferred to a nitrogen-deficient medium to induce sporulation and mRNA 

samples were taken at seven time points: 0, 30 minutes and 2, 5, 7, 9, and 12 hours.  The 

‘‘varieties’’ in this experiment are the time points.  For each time point, the scientists prepared 

a ‘‘red’’ labeled cDNA pool.  In addition, they prepared a ‘‘green’’ labeled cDNA pool from 

the time-0 sample.  Seven microarrays were used in the study, one for each of the seven time 

points.  Each array was probed with the green-labeled sample mixed with one of the seven red-

labeled samples.  Figure 2.7 shows the design of the experiment, which is known as an 

augmented reference design.   

 

 
Figure 2.7: Design of the Augmented Reference Microarray Experiment 

 
 

Notice in Figure 2.7 that variety (or time point) 0 is repeated 7 times using the green 

dye and once using the red dye.  In effect, time 0 serves as a reference for all of the samples.  

All other varieties appear one time each using the red dye.  The design is augmented because 

of the variety 0 red-dye block.  If this block were another variety, e.g. variety 7, then the design 

would be the standard reference design.  Note that each “block” represents all 6,118 genes and 

that the design is balanced with respect to arrays and dyes.   

 The data set contains four fluorescence measurements for each spot: green signal, green 

background, red signal, and red background.  As their estimate of the relative expression of a 
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gene at time k compared with time 0, Chu et al. (1998) used the background-corrected ratio 

(red signal - red background)/(green signal - green background) from the array containing red-

labeled cDNA from time k and green-labeled cDNA from time 0.   

 
Prior Analyses 
 
 Chu et al. (1998) performed the original experiment and rudimentary statistical 

analyses.  They constructed seven profiles using genes previously found to be involved in 

sporulation.  These genes are shown in Table 2.7 and range over the metabolic, early I, early II, 

early-middle, middle, middle-late, and late phases of sporulation. 

 
Table 2.7: Genes Used to Create Average Temporal Profiles 

Metabolic Early I Early II Early-Mid Middle Mid-Late Late 
ACS1 ZIP1 KGD2 YBL078C YSW1 CDC27 SPS100 
PYC1 YDR374C AGA2 QRI1 SPR28 DIT2 YKL050C 
SIP4 DMC1 YPT32 PDS1 SPS2 DIT1 YMR322C
CAT2 HOP1 MRD1 APC4 YLR227C  YOR391C 
YOR100C IME2 SPO16 KNR4 ORC3   
CAR1  NAB4 STU2 YLL005C   
  YPR192W YNL013C YLL012W   
   EXO1    

 

The Pearson correlations between the individual genes and each of the seven profiles 

were calculated.  The unknown genes were assigned to the profile for which their Pearson 

correlation was the highest.  Once this clustering was done, the correlations were ranked for 

each of the groups. The bulk of the paper is a biological commentary on the significance of the 

top ranked genes in a given group. 

Kerr and Churchill (2001) reanalyzed Chu’s data using a model based approach.  They 

used the same seven profiles and fitted an ANOVA model containing terms for array, dye, 
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array x dye, gene, array x gene, and variety x gene effects.  Gene filtering was done using the 

estimates of the variety x gene interaction affects from the ANOVA.  There were 130 genes 

kept.  The genes used to generate the profiles were not included in these 130 genes.  Once the 

filtering method was applied, the genes were assigned to the group for which their Pearson 

correlation was a maximum.  Kerr and Churchill performed bootstrapping to determine how 

stable the cluster assignments were.  Figure 2.8 gives the 95% stable cluster result profiles that 

they reported. 

 
Figure 2.8: Seven 95% Stable Cluster Profiles from Kerr and Churchill (2001) 

 

Table 2.8 shows the number of genes (out of 130) assigned to each profile. 

 
Table 2.8: Number of Genes Assigned to Each Profile 

Profile Number 1 2 3 4 5 6 7
Number of Genes 3 7 3 12 86 17 2

 

Neither Figure 2.8 nor Table 2.8 offer any information about the specific genes that group 

together.  Such information is necessary to make biological hypotheses about why the genes 

group together. 
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2.6 Gene Smoothing 

2.6.1 Smoothing Techniques 

 Smoothing techniques are data transformations made to lessen the impact of individual 

observations on the overall pattern or “shape” of the data.  Smoothing can help to remove 

“spikes” from the data in order to focus on the signal and can be useful for comparing noisy 

data sets.  A wide variety of smoothing techniques are available.  The simplest smoothers are 

based on transformations such as  or 
1
NX , where N is an integer.  Logarithmic 

transformations are also used as data smoothers.  More complex smoothing methods include 

the local regression (LOESS) and penalized least squares (referred to as TPSPLINE in SAS) 

approaches, as well as more complex kernel based methods. 

 The local regression, or LOESS, smoothing method has become quite popular due to 

its ease of implementation and ability to work well in a wide variety of situations.  LOESS 

makes no assumptions about the parametric form of the regression surface.  The form of the 

LOESS regression model is: ( )i i iy g x ε= + , where 1, ,i n= … , iy  is the thi  response, ix  is 

the thi  vector of p predictors, g is the regression function, and iε  is a random error.  The idea 

behind local regression is that the regression function ( )g x  at a specific x can be locally 

approximated by the value of a function in some specified parametric class (SAS Institute Inc., 

1999).  The local approximation is found by fitting a regression model to the data points within 

a given neighborhood of the point x, [ ],x xω ω− + .  Weighted least squares is used to fit linear 

or quadratic functions of the predictors.  The radius is chosen so that the neighborhood 
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contains a specified percentage of the data points.  A SAS option in the LOESS procedure 

which automatically selects the “best” radius was applied (SAS Institute Inc., 1999).  For 

additional information on LOESS, see Cleveland and Grosse (1991).  The TPSPLINE 

approach  requires more data points than LOESS and cannot be easily applied to Chu’s data 

since there are only seven observations for each gene.  TPSPLINE is not discussed in this 

dissertation. 

 
2.6.2 Smoothing Applied to Chu et al. (1998) Microarray Data  

The data from Chu et al. (1998) is used to illustrate the methods discussed.  In order to 

more accurately match gene expression levels across the seven time points with a given profile, 

a LOESS smoothing model is fit for each gene.  For each temporal pattern, the model has 

seven independent variables coming from the expressions for the set of genes at each of the 

seven time points.  The model predicts smoothed values for each time point and essentially 

replaces the original data with their smoothed counterparts.  The local regression terms are 

allowed to be quadratic.  New profiles are constructed using these smoothed values.  The seven 

profiles are constructed from the genes listed in Table 2.7.  The smoothed gene expression 

profiles are visually compared with the smoothed profiles. The independent variables are the 

( )log red signal - red background /  ( )green signal - green background   corrected values 

used by Kerr and Churchill (2001).   

Running the individual LOESS models for each of the 6,188 genes takes approximately 

30 minutes on a 1.5 gigahertz Microsoft Windows XP machine and could be sped up by using 

compiled code.  The SAS code for this operation is given in Appendices 2.1 and 2.2.  Figure 
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2.9 shows the unsmoothed profiles for the seven sporulation phases.  The profiles were 

generated from the average expression levels for the genes listed in Table 2.7. 
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Figure 2.9: Unsmoothed Profiles 
 

Figure 2.10 shows the same profiles after smoothing the genes using LOESS.   
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Figure 2.10: LOESS Smoothed Profiles 
 

Notice that smoothing increases the separation between the profiles.  For example, for 

the Metabolic and Early I phases at time points 0 and 30 minutes, the profiles were nearly 

coincident when unsmoothed (Figure 2.9) but are more distinct when smoothing is applied 

(Figure 2.10).  Changes in gene expression levels happen gradually, and the smoothed profiles 

may more closely resemble what occurs in nature.  Filtering relies on the uniqueness of the 

profiles, and the smoothed profiles may help to improve the cluster results by further 

distinguishing the profiles where possible.   
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2.7 Gene Filtering 

2.7.1 Gene Filtering Techniques 

Microarray technologies assess large numbers of genes.  Some of these genes (such as 

genes for spike-in controls) may not be relevant to the researcher’s questions.  Filtering 

techniques allow non-informative observations to be removed from the data set prior to the 

analysis.  One must be careful not to use a filtering method that is so stringent that it excludes 

informative observations.  Along with thoughtful experimental design, a good filtering method 

can be instrumental in controlling noise in data. 

A commonly used method for gene filtering is based on the variability of gene 

expression values for a given gene.  Genes whose expression values do not change by more 

than a specified value across the samples are filtered out.  The logic behind this type of 

filtering is that gene expression values for a gene active in a specific biological process should 

change at some point.  Filtering based solely on variability works well in some cases.  

However, no consideration is given to the baseline levels of gene expression.  Genes that are 

naturally lowly expressed will have small variances which could result in their being filtered 

out.  These genes could be incorrectly removed if a small change in expression values is 

biologically significant.  Specifying a single variance threshold for determining whether or not 

to keep a gene implies the assumption that all of the genes have similarly scaled variances.  

This may not always be true.  For example, a gene with a large mean and variance for its 

expression level is of less interest than a gene with a small mean and the same large variance.  

One might consider using a filtering technique based on the coefficient of variation in this 
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situation.  The coefficient of variation gives a measure of the variability in relation to the 

magnitude of the estimate and is calculated by dividing the estimate by its standard error. 

Chu et al. (1998) applied a simple filtering method to the yeast sporulation data.  The 

genes were grouped according to which profile their expression levels were maximally 

correlated.  The maximum Pearson correlations for each gene were ranked after the genes were 

assigned to groups.  An arbitrary cutoff was chosen for the correlations, and genes having 

correlations below this threshold were excluded. 

 Chu’s method of filtering has several potential problems.  One possible source of bias 

is that genes having similar correlations with more than one profile are always assigned to the 

profile for which the correlation is the maximum.  This process ignores the fact that clustering 

is not an exact science and a more accurate clustering could result from assigning the gene to a 

cluster for which its correlation is slightly weaker.  Another issue is that the profiles are 

constructed by averaging expression levels of their component genes.  This could mask some 

of the characteristics of the individual genes belonging to the profile.  A single unknown gene 

is compared with a composite profile.  Deviations from this profile may overly influence a 

correlation measure.  Possible solutions to this problem include using different distance or 

similarity measures, different clustering algorithms, or transforming the data in some way prior 

to clustering. 

 Kerr and Churchill (2001) fitted an ANOVA model containing fixed effect terms for 

array, dye, array x dye, gene, array x gene, and variety x gene effects.  Once this model was 

fitted, the difference in gene expression for gene g at time k compared with time 0 was 

estimated along with 99 percent bootstrap confidence intervals for these estimates.  Gene 
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filtering was performed using the criteria that this difference must be greater than zero for at 

least one time point k not zero and that the confidence interval for the difference does not 

contain zero.  If these conditions were not met for a given gene, the gene was excluded from 

further analysis.   

 This analysis also compares a single gene to a composite profile.  The model based 

approach forces only certain terms to be included in the analysis.  Other effects involved could 

be left out.  Due to the amount of data present, this model must be fit in stages (Kerr and 

Churchill, 2001).  This approach works for a simple model, but becomes quite difficult for 

more complex models like the mixed effects model.  Finally, bootstrapping is  computationally 

intensive and may not be practical for all researchers. 

 
2.7.2 Filtering Applied to Chu et al. (1998) Microarray Data 

A novel approach to filtering microarray data based on the profiles presented in Section 

2.6.2 is discussed in this section.  The new method is similar to the method proposed by Chu et 

al. (1998) since it is also based on the Pearson correlations between the gene expression values 

for the individual genes and the seven profiles.  Seven Pearson correlation coefficients are 

calculated for every gene (one for each profile).  This results in a 6,118 x 7 (number of genes 

by number of profiles) matrix of correlations.  Each of the seven columns is individually 

ranked from highest to lowest correlation.  This is different from Chu’s (1998) method since 

they found the maximum correlation for each of the seven profiles and based the filtering on a 

ranked list of these values.  The SAS code for this filtering method is given in Appendix 2.3.  

A threshold value is chosen and genes that have Pearson correlations less than this value are 

filtered out.  Genes with Pearson correlations above this value are kept.  Table 2.9 illustrates 
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the filtering process.  The X’s in the grid have a gene identifier associated with them and 

represent the Pearson correlations between a gene and the profile associated with the column 

number. 

 
Table 2.9: Gene Filtering Using 7 Profiles 

 Profile Number 
 1 2 3 4 5 6 7 

X X X X X X X
X X X X X X X
X X X X X X X

Genes Kept           






 

X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X

Genes Filtered Out






 X X X X X X X

 

Each profile has a set of genes which are kept since their correlations are above the 

threshold value.  Genes having high correlations with more than one profile potentially appear 

more than once in the list of genes kept after the filtering process.  Duplicates are removed 

from the list of genes.   

 For illustration purposes, filtering is performed on the Chu et al. (1998) microarray 

data.  Filtering is done twice, once for the original unsmoothed data and once for the LOESS 

smoothed data.  Each filtering application uses two different threshold values.  The first 

threshold applied is stringent and keeps only the top 20 genes in each of the seven profiles.  

This means that there is a maximum of 20 x 7 = 140 genes kept (if they are all unique).  The 

second threshold is less stringent and keeps the top 100 genes in each of the seven profiles.  

This implies a maximum of 100 x 7 = 700 genes kept.  Note that one could include a different 
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number of genes from each time point.  One way to do this would be to base the gene selection 

on a correlation threshold.  For example, one might only select the genes that had a correlation 

with a profile of greater than 0.8. 

 For the original unsmoothed data, filtering resulted in 140 genes kept for the cutoff 

value of 20.  None of the genes kept were duplicated in the other profiles.  Kerr and Churchill 

(2001) kept 130 genes after applying their filter.  They did not list the individual genes 

selected.  Applying the less stringent filter using a cutoff value of 100 resulted in 666 genes 

being kept.  For this filter, 4.9 percent of the genes kept were duplicated in other profiles. 

 For the LOESS smoothed data, filtering resulted in 140 genes kept for the cutoff value 

of 20.  None of the genes kept were duplicated in the other profiles.  Applying the less 

stringent filter using a cutoff value of 100 resulted in 619 genes being kept.  For this filter, 11.6 

percent of the genes kept were duplicated in other profiles.  The cluster analysis results 

obtained after filtering the data are presented in the next section. 

 
2.8 Cluster Analysis of Chu et al. (1998) Microarray Data 

Cluster analysis is performed using the average linkage and k-means techniques.  The 

Pearson correlation similarity measure was used and seven clusters were requested.  Figures 

2.11 and 2.12 show the seven clusters generated by the average linkage and k-means clustering 

algorithms for filtering cutoff values of 20 and 100 (discussed in Section 2.7.2) for both the 

smoothed and the unsmoothed data.  The seven clusters from the average linkage method were 

selected by “cutting” the dendrogram at the seven cluster level.  Our results are not necessarily 

comparable to Kerr and Churchill’s (2001) results (Figure 2.8), as we applied a different 

filtering method. 
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The first cluster analysis is performed on the unsmoothed data using a threshold value of 

20.  Table 2.10 gives the number of elements assigned to each cluster by the average linkage 

and k-means clustering algorithms.  All of the cluster graphs are on the same scale. 

 
Table 2.10: Cluster Sizes for the Average Linkage and K-means Techniques 

(Filtering Threshold = 20, Unsmoothed) 
Cluster Number Average Linkage K-means

1 20 36 
2 40 19 
3 20 23 
4 20 23 
5 10 10 
6 10 19 
7 20 10 

 
Figure 2.11 contains plots of the seven clusters for each method.  The x-axis represents 

the time point and the y-axis represents the gene expression value.  Since cluster labeling is 

arbitrary, an attempt is made to place the most similar clusters (by visual inspection) from each 

method side by side. 

 
Average Linkage K-means 

Figure 2.11: Average Linkage and K-Means Clusters 
(Filtering Threshold = 20, Unsmoothed) 
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Average Linkage K-means 

Figure 2.11: Average Linkage and K-Means Clusters 
(Filtering Threshold = 20, Unsmoothed) 

(continued) 
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Average Linkage K-means 

Figure 2.11: Average Linkage and K-Means Clusters 
(Filtering Threshold = 20, Unsmoothed) 

(continued) 
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It is difficult to make any general statements about the relative performances of the 

average linkage and k-means clustering results in Figure 2.11.  For a “tight” cluster, the spread 

of the lines representing the gene profiles should be small.  Clusters which do not exhibit such 

patterns are less useful and may contain a high degree of noise. 

 The second cluster analysis is performed on the smoothed data using a threshold value 

of 20.  Table 2.11 gives the number of elements assigned to each cluster by the average linkage 

and k-means clustering algorithms. 

 
Table 2.11: Cluster Sizes for the Average Linkage and K-means Techniques 

(Filtering Threshold = 20, Smoothed) 
Cluster Number Average Linkage K-means

1 40 15 
2 20 58 
3 20 8 
4 20 10 
5 16 18 
6 4 20 
7 20 11 

 

Figure 2.12 contains plots of the seven clusters for each method.  Since cluster labeling 

is arbitrary, the most similar clusters are usually matched by visual inspection.  However, the 

cluster results for the smoothed data are so different that matching them is difficult.  Thus, the 

clusters are presented using the labels assigned by the two algorithms. 
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Average Linkage K-means 

Figure 2.12: Average Linkage and K-Means Clusters 
(Filtering Threshold = 20, Smoothed) 
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Average Linkage K-means 

Figure 2.12: Average Linkage and K-Means Clusters 
(Filtering Threshold = 20, Smoothed) 

(continued) 
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Average Linkage K-means 

Figure 2.12: Average Linkage and K-Means Clusters 
(Filtering Threshold = 20, Smoothed) 

(continued) 
 

 
It is difficult to make any general statements about the relative performances of the 

average linkage and k-means clustering results in Figure 2.12.  However, the average linkage 

clusters do look a little “tighter”, which indicates that this method may perform better for 

clustering genes having similar profiles for these smoothed data. 

The third cluster analysis is performed on the unsmoothed data using a threshold value of 

100.  Table 2.12 gives the number of elements assigned to each cluster by the average linkage 

and k-means clustering algorithms. 

Table 2.12: Cluster Sizes for the Average Linkage and K-means Techniques 
(Filtering Threshold = 100, Unsmoothed) 

Cluster Number Average Linkage K-means
1 155 127 
2 106 50 
3 141 88 
4 52 119 
5 110 27 
6 89 210 
7 13 45 
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Figure 2.13 contains plots of the seven clusters for each method.  Since cluster labeling 

is arbitrary, an attempt is made to place the most similar clusters (by visual inspection) from 

each method side by side.  This matching process is inexact.  Alternative approaches for 

comparing clusters are discussed in Chapter 3. 

 
Average Linkage K-means 

Figure 2.13: Average Linkage and K-Means Clusters 
(Filtering Threshold = 100, Unsmoothed) 
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Average Linkage K-means 

Figure 2.13: Average Linkage and K-Means Clusters 
(Filtering Threshold = 100, Unsmoothed) 

(continued) 
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Average Linkage K-means 

Figure 2.13: Average Linkage and K-Means Clusters 
(Filtering Threshold = 100, Unsmoothed) 

(continued) 
 

It is difficult to make any general statements about the relative performances of the 

average linkage and k-means clustering results in Figure 2.13.  Some of the cluster plots are 

obscured due to the large number of observations present.  There are a few clusters that look 

quite noisy (k-means clusters 4 and 5).  The more stringent filtering method presented earlier 

removes some of this “chatter”. 



56 

 

The fourth and final cluster analysis is performed on the smoothed data using a threshold 

value of 100.  Table 2.13 gives the number of elements assigned to each cluster by the average 

linkage and k-means clustering algorithms. 

 
Table 2.13: Cluster Sizes for the Average Linkage and K-means Techniques 

(Filtering Threshold = 100, Smoothed) 
Cluster Number Average Linkage K-means

1 71 145 
2 29 107 
3 100 54 
4 152 160 
5 166 28 
6 1 57 
7 100 68 

 

Figure 2.14 contains plots of the seven clusters for each method.  Since cluster labeling 

is arbitrary, the most similar clusters are usually matched by visual inspection.  However, the 

cluster results for the smoothed data are so different that matching them is difficult.  Thus, the 

clusters are presented using the labels assigned by the two algorithms. 

Average Linkage K-means 

Figure 2.14: Average Linkage and K-Means Clusters 
(Filtering Threshold = 100, Smoothed) 
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Average Linkage K-means 

Figure 2.14: Average Linkage and K-Means Clusters 
(Filtering Threshold = 100, Smoothed) 

(continued) 
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Average Linkage K-means 

Figure 2.14: Average Linkage and K-Means Clusters 
(Filtering Threshold = 100, Smoothed) 

(continued) 
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It is difficult to make any general statements about the relative performances of the 

average linkage and k-means clustering results in Figure 2.14.  However, the average linkage 

clusters do look a little “tighter”, which indicates that this method may perform better for these 

data in clustering genes having similar profiles.  K-means clusters 5, 6, and 7 are particularly 

noisy.  Average linkage cluster 6 contains only one gene and thus is not useful. 

For the cluster analyses performed using the smoothed data, the average linkage 

clustering algorithm appears to do a better job at grouping genes having similar profiles.  

However, no clustering algorithm is optimal for all situations, as the results are data dependent.  

 The more stringent filtering cutoff value of 20 resulted in “tighter” cluster plots for 

both the smoothed and the unsmoothed data.  This lends credence to the filtering algorithm 

chosen, as the less stringent cutoff value of 100 results in clusters containing more “chatter”.  

The cutoff values of 20 and 100 were arbitrary and one could examine the cluster profile plots 

to see how much “chatter” a given cutoff value adds to the plots. 

 
2.9 Conclusion 

There are a number of choices to be made when applying non-parametric clustering 

techniques.  A normalization technique may be applied.  Normalization is particularly useful in 

the case of microarray data.  One must decide whether to smooth the data or not.  Smoothing is 

only useful for time series data, as categorical data is not suitable for such transformations.  

Smoothing seems to help in some situations but is quite data dependent.  Applying a filtering 

technique may be helpful.  There are a number of ways to filter the data, as discussed in 

Section 2.7.  Finally, to cluster the data, the user must select an appropriate distance measure 

and clustering technique. 



60 

 

Since there are so many ways to approach the preprocessing and clustering of data, 

researchers often perform analyses in several different ways and compare the results.  

However, as discussed in Section 2.8, there is difficulty in comparing cluster solutions from 

different methods due to the arbitrariness of the cluster labeling.  This issue is discussed more 

fully in Chapter 3. 

One of the limitations of non-parametric clustering is that there is no good way to 

measure how well a clustering result partitions the data.  Thus, there is not an optimal way to 

select a method which clusters the data into the “best” groups.  One common approach to this 

problem is to try to select a method which minimizes the within cluster variances and 

maximizes the between cluster variances.  Another possibility is to apply a parametric 

clustering technique, which requires making certain assumptions about the distribution of the 

data.  The advantage of using a parametric clustering technique is that statistically based 

criteria are available for evaluating how well the model is clustering the data.  Parametric 

clustering techniques are discussed in Chapters 4 and 5. 



 

61 

 
 
 
 

Chapter 3 
 

Comparing Clustering Methods 

 
3.1 Introduction 
 
 Comparing cluster analysis solutions is necessary in order to evaluate clusters from 

different clustering methods and to provide some insight into cluster robustness.  Journal 

articles often list the number of elements contained in each cluster for various clustering 

methods or present cluster profile graphs without comparing the actual cluster members.  

One of the reasons for this may be that it is difficult to assign cluster labels to  clusters 

coming from different clustering techniques.  In order to compare two competing clustering 

methods which cluster the data into identical numbers of clusters, one might consider using 

standard comparison methods for tabulated data, such as the kappa statistic.  However, a 

complication arises due to the fact that the cluster labels are arbitrary.  Furthermore, if two 

clustering methods yield different numbers of clusters, some of these comparison techniques 

cannot be used because they require a square frequency table.  For example, the kappa and 

the adjusted kappa statistics require square tables.  Everitt et al. (2001) suggest that if the 

number of clusters is the same and the cluster agreement is good, the correspondence of 

labels for the two clustering methods is usually obvious from inspection.  However, manual 

inspection is not feasible for large numbers of clusters or observations.  There is no 

guarantee that the two clusters being compared are the ones that can be reasonably expected 

to pair with each other.   
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 For the data in this chapter, the true clusters are known.  This information allows 

comparisons to be made between the cluster results and the actual clusters.  A measure of 

cluster effectiveness is obtained by performing these comparisons.  However, the true 

clusters are unknown in most analyses and no clear measure of the success of the clustering 

can easily be ascertained.  Cluster comparisons for these cases is subjective and largely based 

on the biologically plausibility of the cluster results.  One could compare the effectiveness of 

clustering procedures by examining the within or the between cluster variability.  The within 

cluster variability should be minimal while the between cluster variability should be larger 

and proportional to the degree of separation between the clusters. 

 Methods for comparing clusters are the focus of this chapter.  First, the data used in 

the examples is introduced.  Next, several methods for assigning cluster labels are described.  

Various cluster agreement measures are proposed.  Examples are given using data for which 

the actual cluster results are known.  The average linkage and k-means clustering methods 

are used along with the Euclidean distance and Pearson correlation measures.  (Chapter 2 

contains details on clustering methods and distance measures.)  Finally, data from three 

independently performed microarray experiments targeting the same cell lines are compared.  

The results are briefly discussed. 

 
3.2 Microarray Data Used in Examples 

The National Cancer Institute’s (NCI) Developmental Therapeutics Program (DTP) 

has intensively studied 60 cancer cell lines (Ross et al., 2000), which are known as the NCI 

60.  This chapter compares the results of three independent microarray experiments which 
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studied the gene expression patterns in 60 human cancer cell lines derived from the nine 

tumor types listed in Table 3.1. 

 
Table 3.1: Nine Tumor Types from NCI 60 

Tumor Type Number of Cell Lines 
Breast Cancer 8 
Central Nervous System Cancer 6 
Colon Cancer 7 
Leukemia 6 
Melanoma 8 
Non-Small Cell Lung Cancer 9 
Ovarian Cancer 6 
Prostate Cancer 2 
Renal Cancer 8 

 

Each of the three experiments was performed by a different group and targeted the 

same 60 cell lines.  However, the experiments included different numbers of genes and use 

different microarray technologies.  A large number of these genes should be common to the 

three experiments. 

The first data set is from a microarray experiment performed by Ross et al. (2000).  

Using the two color Complementary DNA (cDNA) design, microarrays were prepared by 

robotically spotting 9,703 human cDNAs on glass microscope slides.  The cDNAs included 

approximately 8,000 unique genes.  Each hybridization compared Cy5 labeled cDNA reverse 

transcribed from mRNA isolated from one of the cell lines with Cy3 labeled cDNA reverse 

transcribed from a reference mRNA sample.  The reference sample, used in all of the 

hybridizations, was prepared by combining an equal mixture of mRNA from 12 of the cell 

lines.  Only 6,165 genes had complete data for all 60 cell lines.  These values were 

transformed using the usual log background corrected ratio for the two channels.  The 
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investigators presented the results from an average linkage cluster analysis using Pearson’s 

correlation as the similarity measure.  They found that the cell lines with common tissues of 

origin tended to cluster together.  Cluster analyses were repeated using different subsets of 

genes to assess cluster robustness.  The authors concluded that the clusters appear to be 

reasonably robust.  A major goal of this experiment was to examine the chemosensitivity of 

the NCI 60 to about 70,000 different chemical compounds.  The chemosensitivity data has 

been analyzed by Ross et al. (2000) as well as in separate studies by Paull et al. (1989), van 

Osdol et al. (1994), and Weinstein et al. (1992, 1997) and is not discussed in this chapter.   

The second experiment used the Affymetrix design and examined 5,611 genes for 

each of the 60 cell lines.  This experiment was performed by the Millenium Pharmaceutical 

Company (http://dtp.nci.nih.gov/mtargets/millenium.html).  Poly-A RNA was purified from 

the 60 human tumor cell lines using the Invitrogen Fast Track 2.0 System.  All other steps in 

RNA extraction and preparation for hybridization were performed as  suggested by Wodicka  

et al. (1997).  The Affymetrix GeneChip system was used in these experiments.  The 

Hu6000 chip design was used, consisting of 65,000 features each containing on the order of 

10 million oligonucleotides designed on the basis of sequence data available from GenBank.  

The oligonucleotides on the arrays were designed at Affymetrix to cover the complementary 

strand at the 3' end of the human genes.  About 4,000 known fully sequenced human gene 

cDNA's and more than 2,000 human EST's displaying some similarity with known genes 

characterized in other organisms are represented in a set of four chips.  Most genes are 

represented by 20 overlapping oligonucleotides.  A homosubstitution mismatch 

oligonucleotide is included for each probe design.  The sequence of the oligonucleotide 



65 

 

probes on the arrays was selected based on a combination of sequence uniqueness criteria 

and empirical rules developed at Affymetrix for the selection of oligonucleotides.  A 

quantitative scan of an array and the analysis was done using the Microarray Suite 4.0 

software from Affymetrix as described by Wodicka et al. (1997).  The values reported by the 

authors are the average of the differences (signal from perfect match - signal from mismatch) 

after discarding the maximum, the minimum, and any outliers beyond three standard 

deviations from the mean for the perfect match oligonucleotides.  Values less than zero 

represent measurements for which the mismatched oligonucleotide gave a greater signal than 

the perfect match oligonucleotide.  Clustering results using the average linkage method and 

Pearson correlation measures of similarity were reported.  The investigators found that the 

cell lines with common tissues of origin tended to cluster together.   

The third experiment also used the Affymetrix design and collected data from 7,129 

genes for each of the 60 cell lines.  This experiment was reported by a group at the 

Massachusetts Institute of Technology (Staunton et al., 2001).  Poly-A selected RNA from 

each cell line was used to prepare biotinylated cRNA targets.  These targets were hybridized 

to Affymetrix high density Hu6800 microarrays, washed, stained with phycoerythrin 

conjugated streptavidin, and signal amplified using biotinylated anti-streptavidin antibodies.  

Expression values were calculated using Affymetrix’s Microarray Suite 4.0 software.  An 

expression level of 100 units was assigned to measurements of <100.  Setting the threshold 

in this manner could create a systematic artifactual bias in the distribution of the signals.  

The  authors reported results from an average linkage cluster analysis and found that the cell 
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lines with similar tissues of origin tended to cluster together.  Most of Staunton’s (2001) 

paper focuses on chemosensitivty data, which is not discussed in this chapter. 

Notice that the three experiments involve different numbers of genes.  There is not 

enough information in the publicly available data files to match up the common genes in  the 

experiments.  However, the 60 cell lines are easily matched.  To our knowledge, no 

systematic study of the effect of cluster labeling on clustering method agreement measures 

has been reported for any of the three experiments.  This chapter compares the labeling 

effects on clusters of cell lines. 

 
3.3 Assigning Cluster Labels 

 Several approaches for assigning cluster labels are described below.  This list is not 

exhaustive.  Our goal is not to advocate any specific method but instead is to encourage 

consistency in cluster labeling and awareness of the effect of cluster labeling on the 

interpretability of cluster comparisons.  Clustan Graphics version 5.26 was used to perform 

all of the clustering in this chapter (Wishart, 1999).  Data management was performed using 

SAS version 8.02 (SAS Institute, 1999).  The data were not filtered for this analysis. 

 
3.3.1 Naïve Approach to Cluster Labeling 

 This is the simplest approach for labeling clusters.  For two clustering methods A and 

B, which cluster the data into AC  and BC  clusters, respectively, the cluster labels (1, , AC…  

and 1, , BC… ) arbitrarily assigned by the clustering algorithms are kept.  No attempt is made 

to match the cluster labels based on cluster membership or cluster size.   
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The following example uses the naïve approach to assign labels to clusters from the 

Ross et al. (2000) NCI 60 microarray data presented in Section 3.2.  The k-means clustering 

algorithm is used (see Chapter 2 for details) to cluster the 60 cell lines into 9 known tumor 

types.  The “real” clusters are known  and are referred to as the gold standard.  They are 

compared to the cluster results from the k-means algorithm using the Pearson correlation 

similarity measure.  Table 3.2 summarizes the agreement between the gold standard and the 

k-means clustering results using existing cluster labels.  Note that only 2 out of 9 entries on 

the diagonal (bolded) are non-zero, indicating that there is poor agreement between the k-

means clustering algorithm and the gold standard.  Both of the non-zero entries are 1, which 

indicates only weak agreement between the clustering methods for these two clusters. 

 
Table 3.2: Naïve Cluster Labeling 

  Gold Standard 
  1 2 3 4 5 6 7 8 9

1 1 0 2 0 0 0 0 0 0
2 0 0 0 0 6 0 0 0 0
3 4 1 0 5 0 0 0 2 0
4 0 0 2 0 0 7 0 0 0
5 0 0 0 0 0 0 1 0 0
6 0 6 0 0 0 0 0 0 0
7 1 0 0 0 0 0 0 0 0
8 2 0 3 1 0 1 7 0 5

k-
m

ea
ns

 

9 1 0 1 0 0 0 0 0 1
 

Clustering software packages assign cluster labels differently.  Thus, using a naïve 

approach to label clusters for comparison offers little consistency.  Also, using this approach 

fails to make use of the knowledge that clusters having a large number of elements in 

common should most likely share the same label.   
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The naïve approach to cluster labeling works when the two competing clustering 

algorithms assign cluster labels in exactly the same order.  This rarely happens in practice, 

particularly when a large number of clusters is present.  If the cluster labels do not occur in 

exactly the same order, the clusters are said to be mislabeled.  The consequences of 

mislabeling clusters vary in severity and may cause the reported agreement between methods 

to be weaker than it actually is. 

 
3.3.2 Ranked Approach to Cluster Labeling 

 The ranked approach to labeling clusters assigns cluster labels based on the ranks of 

the cluster sizes.  For comparing the gold standard with the k-means clustering algorithm 

(using the Pearson correlation similarity measure), Table 3.3 gives the ranked list of clusters 

along with the label assigned.   

 
Table 3.3: Ranked List of Cluster Members with Labels Assigned 

 Number of Cluster Members 
Gold Standard 2 6 6 6 7 8 8 8 9 
k-means 1 1 3 3 6 6 9 12 19 
Cluster Label Assigned 1 2 3 4 5 6 7 8 9 

 

The number of cluster members in the k-means clusters do not correspond well with 

the number of cluster members in the gold standard.  Also, several clusters have the same 

number of members in both the gold standard and k-means cluster results.  These tied values 

are a potential weakness of the ranked approach to labeling clusters, as there is no way to 

establish a proper ranking for tied cluster sizes.  For example, the clusters labeled 3 and 4 are 

tied in terms of the number of cluster members for both the gold standard and k-means 

clustering results.  The gold standard has 6 members for each of these clusters while the k-
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means results indicate only 3 members for these two clusters.  Suppose we call these cluster 

pairings 36 , 46 , 33 , and 43 , where the subscript represents the cluster label, the 6’s come 

from the gold standard, and the 3’s come from the k-means clustering results.  Currently, the 

cluster pair ( )3 36 ,3  is assigned cluster label 3 and the cluster pair ( )4 46 ,3  is assigned label 

4.  An equally valid possibility would be to assign the cluster pair ( )3 46 ,3  to label 3 and 

( )4 36 ,3  to label 4 (or vice versa).  It is possible to develop an algorithm which assigns 

cluster labels based on all of the possible combinations of tied clusters and chooses the 

labeling scheme offering the best cluster agreement.  However, such an algorithm is difficult 

to implement and the computational resources required would quickly increase with the 

number of clusters. 

Table 3.4 summarizes the agreement between the gold standard and k-means 

clustering results using the new rank based cluster labels.  

 
Table 3.4: Rank Based Cluster Labeling 

  Gold Standard 
  1 2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 1 0
2 0 0 0 0 0 0 0 0 1
3 0 0 0 0 0 2 0 0 1
4 0 0 0 1 0 1 0 0 1
5 0 0 6 0 0 0 0 0 0
6 0 0 0 0 6 0 0 0 0
7 0 0 0 0 0 0 7 0 0
8 2 5 0 0 1 0 0 0 4

k-
m

ea
ns

 

9 0 1 0 5 0 3 1 7 2
 

Note that only 3 out of 9 entries on the diagonal (bolded) are non-zero, indicating that 

there is poor agreement between the k-means clustering algorithm and the gold standard.  
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Observe that 2 out of 3 of the diagonal entries have values of 2 or less, indicating weak 

agreement between the two clustering methods.  However, the agreement for the ranked 

cluster labeling approach is better than that for the naïve cluster labeling approach. 

 
3.3.3 Best Case Approach to Cluster Labeling 

 The best case cluster labeling approach assigns cluster labels based on the maximum 

number of elements that the clusters from two different methods have in common.  This 

approach is called the best case approach because it assumes that clusters sharing the 

maximum number of common members should receive the same label.  The algorithm 

iterates until all of the clusters are assigned a label.  This procedure is illustrated in the 

example below.  Table 3.5 shows how well the clusters agree based on the cluster labels 

assigned by the clustering algorithms.  The k-means clustering algorithm uses the Pearson 

correlation similarity measure.   

 
Table 3.5: Agreement between Arbitrarily Assigned Cluster Labels 

  Gold Standard 
  1 2 3 4 5 6 7 8 9

1 1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0
3 4 1 0 0 0 0 0 0 0
4 0 0 2 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
6 0 6 0 0 0 0 0 0 0
7 1 0 0 0 0 0 0 0 0
8 2 0 3 1 0 1 7 0 0

k-
m

ea
ns

 

9 1 0 1 0 0 0 0 0 1
 

The initial step in the best case cluster labeling algorithm is to find the maximum 

number of matches in the first column.  The number circled, 4,  in Table 3.5 is the maximum.  
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This indicates that k-means cluster 3 and gold standard cluster 1 receive the same cluster 

label, 1, because they have the most elements in common.  Since they are now assigned 

cluster labels, k-means cluster 3 and gold standard cluster 1 are eliminated from 

consideration, thus forming Table 3.6. 

 
Table 3.6: Best Case Cluster Label Assignment, 2nd Iteration 

  Gold Standard 
  2 3 4 5 6 7 8 9

1 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0
4 0 2 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 0 3 1 0 1 7 0 0

k-
m

ea
ns

 

9 0 1 0 0 0 0 0 1
 
 

The process is repeated, with 6 being the maximum entry in the first column of Table 

3.6.  This indicates that k-means cluster 6 and gold standard cluster 2 receive the same 

cluster label, 2, because they have the most elements in common.  

This process iterates until all of the k-means clusters are assigned new labels. Table 

3.7 summarizes the agreement between the gold standard and k-means clustering results 

using the new cluster labels.   
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Table 3.7: Best Case Approach to Cluster Labeling 
  Gold Standard 
  1 2 3 4 5 6 7 8 9

1 4 1 0 5 0 0 0 2 0
2 0 6 0 0 0 0 0 0 0
3 2 0 3 1 0 1 7 0 5
4 1 0 2 0 0 0 0 0 0
5 0 0 0 0 6 0 0 0 0
6 0 0 2 0 0 7 0 0 0
7 0 0 0 0 0 0 1 0 0
8 1 0 0 0 0 0 0 0 0

k-
m

ea
ns

 

9 1 0 1 0 0 0 0 0 1
 

Note that now 7 out of 9 entries on the diagonal (bolded) are non-zero, indicating 

much improved cluster agreement between the k-means clustering algorithm and the gold 

standard.   

The best case cluster labeling algorithm is limited in that there could be ties on the 

number of members shared between clusters.  Tied values should be treated consistently.  In 

the event of a tie, this algorithm assigns cluster labels based on the first pair of tied clusters.  

Ties are discussed in more detail in Section 3.3.2. 

The best case cluster labeling algorithm assigns cluster labels on the basis on the 

maximum number of common members.  A possible improvement would be to use the 

percentage of common members for cluster labeling instead of a simple count.  Such a 

labeling scheme could prevent some undesirable situations, such as a large cluster in one 

clustering method being assigned the same label as a much smaller cluster from another 

clustering method.  This could occur when the clustering results for the large cluster agree 

poorly but the results for the small cluster agree well and both cluster pairs have a similar 

count of observations for which the clusters agree. 
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3.4 Measuring Cluster Agreement 

 Once the cluster labels are assigned and the data is reduced to a two dimensional 

frequency table, methods for measuring how well the two clustering algorithms agree are 

needed.  Ideally, these measures should not be influenced by the number of observations or 

clusters present.  If both clustering methods agree strongly, one would expect more 

observations to fall on the diagonal.  Thus, the agreement measure should reflect how many 

off-diagonal observations are present.  Several agreement measures are proposed and 

discussed below. 

 
3.4.1 Kappa and Weighted Kappa Statistics 

 The kappa statistic is a widely used measure of how well two frequency tables agree.  

Cohen (1960) first introduced the kappa statistic.  This statistic is introduced  using the 

symbolic data presented in Table 3.8. 

 
Table 3.8: Example for the Kappa Statistic Presentation 

  Cluster Method 2 Total
  1 2 3 4  

1 11O  12O  13O  14O  1R  
2 21O 22O 23O 24O 2R  
3 31O  32O 33O 34O 3R  C

lu
st

er
 

M
et

ho
d 

1 

4 41O 42O 43O 44O 4R  
Total  1C  2C  3C  4C  n 

 

Both the observed proportion of observations that agree and the expected proportion 

of observations that should agree are calculated.  The observed proportion that agree, oP , is 

the sum of the observed diagonal elements in the frequency table divided by the total number 
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of observations classified.  Thus, 
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calculated as:  

 

 � .
1
o e

e

P P
P

κ
−

=
−

 (3.1) 

 
The kappa statistic takes on a value of one when the agreement is perfect and zero if 

the agreement is the same as that expected by chance.  Kappa values less than zero, which 

occur rarely and are usually interpreted as zero,  indicate that the agreement is less than that 

expected by chance.   

The asymptotic variance of the kappa statistic is (Fleiss et al., 1969): 
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, and the 'sρ  indicate the proportion of observations falling in a given 

cell of the table.  A confidence interval for the kappa statistic may be calculated as: 

 

 � �( )1 / 2 var  ,z ακ κ−±  (3.3) 
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where 1 / 2z α−  is the usual 100(1 / 2)α−  percentile of the standard normal distribution.  For 

example, to obtain 95 percent confidence limits, 0.05α =  and 1 / 2 1.96z α− = . 

 One limitation of the kappa statistic is that it does not apply to tables which have 

different numbers of rows and columns.  A second limitation of the kappa statistic is that it 

treats all of the off-diagonal observations equally.  In many cases, the researcher may prefer 

to treat observations falling farther from the diagonal differentially. 

 The weighted kappa statistic generalizes the kappa statistic.  The weighted kappa 

statistic assigns a weight ijw  to each cell depending on its location in the frequency table.  

These weights must conform to the following conditions: 

1. 0 1  ijw i j≤ < ∀ ≠  

2. 1  iiw i= ∀  
3.   i, jij jiw w= ∀  

 
Analogous to the simple kappa statistic, the observed agreement proportion is:  
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/
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= ∑ ∑ , where c is the number of columns.  The expected agreement 

proportion is: 2
( ) . .
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= ∑ ∑ .  The weighted kappa statistic is calculated as: 
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The weighted kappa statistic is interpreted in the same way as the simple kappa 

statistic.  The weighted kappa statistic also requires square frequency tables.   

The asymptotic variance of the weighted kappa statistic is (Fleiss et al., 1969): 
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where . .
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c
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1
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i
w wρ

=
= ∑ .  A confidence interval for the kappa statistic 

may be calculated as: 

 

 � �( )1 / 2 varw wz ακ κ−±  (3.6) 

 
where 1 / 2z α−  is the usual 100(1 / 2)α−  percentile of the standard normal distribution.  For 

example, to obtain 95 percent confidence limits, 0.05α =  and 1 / 2 1.96z α− = . 

There are many choices for assigning weights.  Two of the most commonly used 

methods for assigning weights are the Cicchetti-Allison and Fleiss-Cohen methods.  The 

weighted kappa statistics calculated in this chapter use the Cicchetti-Allison weights. 

 Cicchetti and Allison (1971) proposed one of the first broadly accepted weighting 

schemes.  Let c be the number of categories and and i jC C  represent the column totals for 

columns i and j, respectively.  The Cicchetti-Allison weights are calculated as: 
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Fleiss and Cohen (1973) proposed what became known as the Fleiss-Cohen 

weighting scheme.  The Fleiss-Cohen weights are calculated as: 
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Both of these weighting schemes assign more weight for frequency table entries closer to the 

diagonal and less weight for those falling farther from the diagonal.   

 
3.4.2 Rand Index 

 The Rand index (Rand, 1971) is a frequency table agreement measure based on the 

pairwise comparison of n observations rather than a simple cross tabulation of the 

frequencies.  The index can be used to compare frequency tables having different numbers of 

rows and columns.  The Rand index computes the proportion of the total of 2nC  observation 

pairs that agree (Everitt et al., 2001).  Agreement means that either both of the observations 

in the pair fall into the same cluster according to both partitions or both observations fall into 

different clusters according to both partitions.  The Rand index is defined as: 
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where 
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n is the total number of observations, and c1 and c2 are the number of rows and columns in 

the frequency table, respectively.   

The derivation of Equation 3.9 comes from the argument presented by Rand (1971).  

Consider n points, 1 2, , , nX X X… , and two clusters of them, { }1 2, , , nY Y Y Y= …  and 

{ }' ' ' '
1 2, , , nY Y Y Y= … .  A similarity measure, S, between the two clusterings of the same data, 

Y and 'Y , can be defined as ( )',S Y Y , which is equal to the number of cluster assignment 

pairs in agreement normalized by the total number of pairs.  This formula may be written as: 
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( )',S Y Y  may be expressed in the convenient computational form, called the Rand index, 
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given in Equation 3.9.  The asymptotic variance for the Rand index is not available in the 

literature. 

The Rand index has an expected value slightly greater than 0 and ranges from slightly 

less than 0 to 1.  If the partitions agree perfectly, the Rand index is 1.  The Rand index is a 

similarity measure, thus (1 – the Rand index) is a distance measure.   Fowlkes and Mallows 

(1983) point out that the Rand index tends to increase as the number of clusters increases and 

that the possible range of values for the index is quite narrow.  The adjusted Rand index 

(discussed in the next section) compensates for these issues. 

 The Rand index is used to compare cluster solutions in the microarray literature.  For 

example, Yeung et al. (2001) compare the results of running several different clustering 

algorithms to cluster genes using both real and simulated microarray gene expression data.  

They use the Rand index as the primary measure of cluster agreement.  Yeung and Ruzzo 

(2001) examined principal component based methods for clustering microarray data.  They 

analyzed data from simulated and empirical microarray experiments.  They compared the  

clustering results using k-means and principle component based methods using the Rand 

index and the adjusted Rand index as the agreement measures.  The clustering methods 

agreed poorly.  Yeung and Ruzzo do not recommend principal component based methods for 

general use due to the computational resources required. 

 
3.4.3 Adjusted Rand Index 
 
 The adjusted Rand index has an expected value of zero and ranges from -1 to 1.  Due 

to its expanded range, the adjusted Rand index is more sensitive than the Rand index.  The 

adjusted Rand index does not increase with the number of clusters.  Hubert and Arabie 
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(1985) developed the adjusted Rand index.  The adjusted Rand index, ARI , is analogous to 

the kappa coefficient since it ranges from chance levels (0) to perfect agreement (1) and 

measures the agreement over and above that expected by chance (Everitt et al., 2001).  Any 

Rand index value smaller than zero indicates less than chance agreement and is generally set 

to zero in practice.  This index is calculated by:  

/ARI N D= , where c1 and c2 are as defined previously, 
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The asymptotic variance for the Rand index is not available in the literature. 

Milligan and Cooper (1986) evaluated many different indices for measuring the 

agreement between two partitions with different numbers of clusters and recommend the 

adjusted Rand index over any competing measures.  The adjusted Rand index typically takes 

on lower values than the Rand index. 
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3.4.4 Examples of Comparing Cluster Agreement  

 This section compares the various cluster agreement measures using the data from 

Ross et al. (2000) presented in Section 3.2.  Recall that the 60 tumor cell lines should cluster 

into 9 known tumor types.  Table 3.9 compares the agreement between the gold standard, 

average linkage, and k-means clustering methods using the Euclidean distance measure.  The 

kappa and adjusted kappa statistics and their 95 percent confidence intervals are calculated 

using the naïve, ranked, and best case cluster labeling algorithms described in Section 3.3.  

The Rand and adjusted Rand statistics are also calculated.  The SAS code for these analyses 

is listed in Appendix 3.1.   

 
Table 3.9: Cluster Agreement for the Euclidean Distance Measure 

Comparison Kappa Weighted Kappa RI ARI 
 N R BC N R BC   
GS vs. AL 0* 

 (0*,0.01) 
0.01 
 (0*,0.09) 

0.18 
 (0.08,0.28) 

0*  
(0*,0.04) 

0*  
(0*,0.07) 

0.15 
(0.01,0.29) 

0.47 0.04 

GS vs. KM 0* 
(0*,0.01) 

0.04 
(0*,0.15) 

0.50 
(0.36,0.63) 

0.13 
(0*,0.29) 

0.06 
(0*,0.20) 

0.38 
(0.19,0.57) 

0.84 0.34 

AL vs. KM 0* 
(0*,0.07) 

0.07 
(0.01,0.12) 

0.25 
(0.13,0.38) 

0* 
(0*,0.01) 

0.39 
(0.25,0.53) 

0.11 
(0*,0.25) 

0.59 0.24 

where RI = Rand Index, ARI = Adjusted Rand Index 
GS = gold standard, KM = k-means, AL = average linkage 

N = naïve labeling, R = ranked labeling, BC = best case labeling 
Numbers in ()’s represent 95% confidence intervals 

* = negative calculated value was set to zero 
 

The results shown in Table 3.9 are discussed below.  First of all, notice that for the 

kappa statistic, all three comparisons show better agreement (0.18, 0.50, 0.25) for the best 

case cluster labeling algorithm than for the ranked and naïve algorithms.  This indicates that 

the best case cluster labeling algorithm may more closely reflect the true cluster similarity 

than the other labeling algorithms.  The weighted kappa statistics vary widely.  Focusing on 

the best case cluster labeling algorithm, we see that both the kappa and the weighted kappa 
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statistics are the highest (0.50 and 0.38, respectively) for the gold standard versus k-means 

cluster results comparison.  The Rand index and the adjusted Rand index for this comparison 

(RI = 0.84 and ARI = 0.34) are also the maximums for the three comparisons.  This evidence 

suggests that the k-means algorithm does the best at reproducing the actual clusters.  If we 

look at our measures of choice, the Rand index and adjusted Rand index, we see that the 

average linkage and k-means algorithms agree quite well (RI = 0.59 and ARI = 0.24), while 

the gold standard and average linkage results agree less strongly (RI = 0.47 and ARI = 0.04).  

Cluster agreement measures depend heavily on the labeling algorithm employed as well as 

how readily separable the clusters are. 

Each comparison between two clustering methods in Table 3.9 is based on an 

underlying frequency table.  The kappa, weighted kappa, Rand index, and adjusted Rand 

index cluster agreement measures are calculated using these tables.  These 9 x 9 tables for 

the gold standard versus k-means cluster comparisons reported in the second line of Table 

3.9 are given below.   

 Table 3.10 gives the frequency table for the naïve cluster labeling algorithm using the 

Euclidean distance measure for the gold standard versus k-means cluster comparison.  Notice 

in Table 3.10 that most of the diagonal entries are zero, indicating weak agreement between 

the two clustering methods.  This weak agreement is reflected in the agreement measures 

reported in Table 3.9. 
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Table 3.10: Frequency Table for Gold Standard versus K-means Cluster Comparison 
using the Naïve Cluster Labeling Algorithm and the Euclidean Distance Measure 

 K-means 
 1 2 3 4 5 6 7 8 9
1 1 0 4 0 0 0 1 2 1
2 0 0 1 0 0 6 0 0 0
3 2 0 0 2 0 0 0 3 1
4 0 0 5 0 0 0 0 1 0
5 0 6 0 0 0 0 0 0 0
6 0 0 0 7 0 0 0 1 0
7 0 0 0 0 1 0 0 7 0
8 0 0 2 0 0 0 0 0 0

G
ol

d 
St

an
da

rd
 

9 0 0 0 0 0 0 0 5 1
 

 Table 3.11 gives the frequency table for the ranked cluster labeling algorithm using 

the Euclidean distance measure for the gold standard versus k-means cluster comparison. 

 
Table 3.11: Frequency Table for Gold Standard versus K-means Cluster Comparison 

using the Ranked Cluster Labeling Algorithm and the Euclidean Distance Measure 
 K-means 

 1 2 3 4 5 6 7 8 9
1 0 0 0 0 0 0 0 2 0
2 0 0 0 0 0 0 0 5 1
3 0 0 0 0 6 0 0 0 0
4 0 0 0 1 0 0 0 0 5
5 0 0 0 0 0 6 0 1 0
6 0 0 2 1 0 0 2 0 3
7 0 0 0 0 0 0 7 0 1
8 1 0 0 0 0 0 0 0 7

G
ol

d 
St

an
da

rd
 

9 0 1 1 1 0 0 0 4 2
 

Notice in Table 3.11 that there are more entries falling on the diagonal than there 

were in Table 3.10, indicating slightly better agreement between the two clustering methods.  

This stronger agreement is reflected in the agreement measures reported in Table 3.9. 
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Table 3.12 gives the frequency table for the best case cluster labeling algorithm using 

the Euclidean distance measure for the gold standard versus k-means cluster comparison. 

 
Table 3.12: Frequency Table for Gold Standard versus K-means Cluster Comparison 
using the Best Case Cluster Labeling Algorithm and the Euclidean Distance Measure 

 K-means 
 1 2 3 4 5 6 7 8 9
1 2 0 0 2 0 0 0 3 1
2 0 6 0 0 0 0 0 0 0
3 0 0 5 0 0 0 0 1 0
4 0 0 0 7 0 0 0 1 0
5 0 0 0 0 1 0 0 7 0
6 0 0 1 0 0 6 0 0 0
7 1 0 4 0 0 0 1 2 1
8 0 0 0 0 0 0 0 5 1

G
ol

d 
St

an
da

rd
 

9 0 0 2 0 0 0 0 0 0
 

Notice in Table 3.12 that there are more entries falling on the diagonal than there 

were in Tables 3.10 and 3.11, indicating significantly better agreement between the two 

clustering methods.  This stronger agreement is reflected in the agreement measures reported 

in Table 3.9. 

The gold standard versus k-means comparison was arbitrarily chosen to illustrate the 

underlying frequency tables used for the cluster comparisons.  Such tables exist for each 

cluster comparison reported in this section.  The best case cluster labeling algorithm resulted 

in the most entries falling on the diagonal and thus indicates the best cluster agreement.  The 

naïve and ranked based cluster labeling algorithms had fewer entries falling on the diagonal, 

and indicate a weaker cluster agreement than actually exists. 
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Table 3.13 repeats the above analysis using the Pearson correlation similarity 

measure.  The Pearson correlation similarity measure is frequently employed when 

performing cluster analysis using microarray data and the dissimilarity is calculated as 

(1 – the usual Pearson correlation coefficient).   

 
Table 3.13: Cluster Agreement for the Pearson Correlation Similarity Measure 

Comparison Kappa Weighted Kappa RI ARI 
 N R BC N R BC   
GS vs. AL 0.24 

(0.12,0.36) 
0.21 
(0.08,0.34) 

0.35 
(0.22,0.48) 

0.35 
(0.18,0.53) 

0.08 
(0*,0.24) 

0.41 
(0.24,0.59) 

0.84 0.37 

GS vs. KM 0* 
(0*,0.01) 

0.04 
(0*,0.15) 

0.50 
(0.36,0.63) 

0.13 
(0*,0.29) 

0.06 
(0*,0.20) 

0.38 
(0.19,0.57) 

0.84 0.34 

AL vs. KM 0.20 
(0.08,0.31) 

0* 
(0*,0.08) 

0.26 
(0.14,0.37) 

0.62 
(0.52,0.72) 

0* 
(0*,0.04) 

0.47 
(0.35,0.60) 

0.83 0.43 

where RI = Rand Index, ARI = Adjusted Rand Index 
GS = gold standard, KM = k-means, AL = average linkage 

N = naïve labeling, R = ranked labeling, BC = best case labeling 
Numbers in ()’s represent 95% confidence intervals 

* = negative calculated value was set to zero 
 
 
The results shown in Table 3.13 are discussed below.  Note that the gold standard, or 

“true” clustering, remains the same regardless of the distance measure employed.  Once 

again, for the kappa statistic all three comparisons show better agreement (0.35, 0.50, 0.26) 

for the best case cluster labeling algorithm than for the ranked and naïve algorithms.  The 

weighted kappa statistics vary widely and a general statement cannot be made about them.  

However, the maximum weighted kappa statistic (0.62) occurs for the naïve cluster labeling 

algorithm for the average linkage versus k-means comparison.  The adjusted Rand index is 

also a maximum (ARI = 0.43) for this comparison, and the Rand index (0.83) is very close to 

its maximum value of 0.84 for this comparison.  Interpreting the adjusted Rand index 

statistic, the average linkage and k-means clustering methods agree quite strongly (ARI = 

0.43) followed by the gold standard versus average linkage comparison (ARI = 0.37) and the 
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gold standard versus k-means comparison (ARI = 0.34).  Finally, by comparing Tables 3.9 

and 3.13, it can be seen that the Pearson correlation similarity measure did a better job than 

the Euclidean distance measure at reproducing the true clusters using the average linkage and 

k-means clustering algorithms.  The gold standard versus k-means comparison is identical 

for both the Euclidean distance and Pearson correlation similarity measures.  This indicates 

that the k-means clustering algorithm is less sensitive to the choice of distance measure for 

these data than the average linkage clustering algorithm. 

The comparison of the Euclidean distance and Pearson correlation similarity 

measures is formally made in Table 3.14.  Cross comparisons are made between the average 

linkage and k-means clustering algorithms with the Euclidean distance and Pearson 

correlation similarity measures. 

 
Table 3.14: Cluster Agreement for the Euclidean Distance versus the Pearson Correlation 

Similarity Measures 
Comparison Kappa Weighted Kappa RI ARI 
 N R BC N R BC   
ALE vs. ALP 0* 

(0*,0.04) 
0* 
(0*,0.01) 

0.09 
(0.00,0.17) 

0* 
(0*,0.01) 

0* 
(0*,0.03) 

0* 
(0*,0.04) 

0.45 0* 

KME vs. 
KMP 

1.0 
(1.0,1.0) 

1.0 
(1.0,1.0) 

1.0 
(1.0,1.0) 

1.0 
(1.0,1.0) 

1.0 
(1.0,1.0) 

1.0 
(1.0,1.0) 

1.0 1.0 

ALE vs. 
KME/KMP 

0* 
(0*,0.07) 

0.07 
(0.01,0.12) 

0.25 
(0.13,0.38) 

0* 
(0*,0.01) 

0.39 
(0.25,0.53) 

0.11 
(0*,0.25) 

0.59 0.24 

KME vs. 
ALP 

0.20 
(0.08,0.31) 

0* 
(0*,0.08) 

0.36 
(0.24,0.49) 

0.62 
(0.52,0.72) 

0* 
(0*,0.04) 

0.54 
(0.39,0.69) 

0.83 0.43 

where RI = Rand Index, ARI = Adjusted Rand Index 
ALE  and ALP = average linkage with Euclidean distance and Pearson correlation similarity measures 

KME and KMP = k-means clustering with Euclidean distance and Pearson correlation similarity measures 
N = naïve labeling, R = ranked labeling, BC = best case labeling 

Numbers in ()’s represent 95% confidence intervals 
* = negative calculated value was set to zero 

 

The average linkage clustering results are very different when using the Euclidean 

distance measure versus the Pearson correlation similarity measure.  All but one of the 
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agreement measures in row one of Table 3.14 is zero which indicates poor (chance) 

agreement for the average linkage clustering method using the Euclidean distance versus the 

Pearson correlation similarity measures.  In contrast, all of the agreement measures in row 2 

of Table 3.14 are one.  This indicates that the k-means clustering algorithm agrees perfectly 

when using the Euclidean distance versus the Pearson correlation similarity measures.  The 

k-means clustering algorithm is not as dependent as the average linkage clustering algorithm 

on the choice of a distance measure for this data set.  The average linkage clustering 

algorithm using the Euclidean distance measure is compared to the k-means algorithm using 

both the Euclidean distance and Pearson correlation similarity measures.  The average 

linkage and Euclidean distance measure combination agrees weakly (RI = 0.59, ARI = 0.24) 

with the k-means algorithm results.  Finally, the k-means algorithm using the Euclidean 

distance measure compares favorably with the average linkage algorithm using the Pearson 

correlation similarity measure (RI = 0.83, ARI = 0.43).   

 
3.5 Comparison of Independent Microarray Experiments 

Section 3.4 examined various cluster agreement measures and presented a microarray 

example using data from Ross et al. (2000).  As mentioned in Section 3.2, this same 

experiment was independently replicated twice using Affymetrix microarray designs.  While 

these samples have many of the same genes in common, there is insufficient information on 

gene labels in the publicly available data files to match up individual genes between the three 

data sets.  However, the 60 tumor cell lines are readily matched.  This section compares the 

cell line clustering results of the average linkage and k-means clustering methods with the 

gold standard using the Pearson correlation similarity measure for the two Affymetrix data 
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sets.  Finally, the cluster results for the three data sets are compared with each other.  The 

cluster results from the three data sets should ideally be very similar to each other.  Note that 

no filtering is done in these analyses.  Filtering can help to reduce noise and to remove 

outlying observations which might bias the cluster results.  Chapter 2 contains details on 

filtering methods, as filtering is an important part of a complete microarray data analysis. 

 The Millenium pharmaceutical company data set (discussed in Section 3.2) contains 

gene expression data on 5,611 genes from 60 cancer cell lines.  These 60 cell lines should 

segregate into 9 known tumor types.  The actual tumor groups are called the gold standard.  

Table 3.15 shows how well the various clustering methods agree using the Pearson 

correlation similarity measure.   

 
Table 3.15: Millenium Data Cluster Agreement for the Pearson Correlation Similarity 

Measure 
Comparison Kappa Weighted Kappa RI ARI 
 N R BC N R BC   
GS vs. AL 0* 

(0*,0.07) 
0* 
(0*,0.07) 

0.09 
(0*,0.20) 

0.06 
(0*,0.15) 

0* 
(0*,0.06) 

0.06 
(0*,0.16) 

0.52 0* 

GS vs. KM 0.04 
(0*,0.14) 

0.02 
(0*,0.12) 

0.15 
(0.02,0.27) 

0.11 
(0*,0.29) 

0.04 
(0*,0.17) 

0.12 
(0*,0.32) 

0.76 0* 

AL vs. KM 0.11 
(0.02,0.21) 

0.03 
(0*,0.12) 

0.20 
(0.08,0.32) 

0.07 
(0*,0.17) 

0.15 
(0*,0.31) 

0.12 
(0*,0.26) 

0.65 0.26 

where RI = Rand Index, ARI = Adjusted Rand Index 
GS = gold standard, KM = k-means, AL = average linkage 

N = naïve labeling, R = ranked labeling, BC = best case labeling 
Numbers in ()’s represent 95% confidence intervals 

* = negative calculated value was set to zero 
 

Regardless of the cluster labeling algorithm employed, the kappa and weighted kappa 

statistics in Table 3.15 are poor.  The maximum kappa is 0.20, which indicates weak 

agreement.  Notice that although the average linkage and k-means cluster algorithms agree 

somewhat with each other (ARI = 0.26), both algorithms reproduce the gold standard 
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clusters at chance levels.  As seen by comparing Tables 3.13 and 3.15, the Ross et al. (2000) 

data clustering results reproduce the actual clusters much better than the Millenium 

pharmaceutical data.  This may be due in part to having fewer genes in the Millenium 

experiment or more noise present due to not filtering the data.  Perhaps some of the genes 

that are present in the Ross experiment but absent in the Millenium experiment are very 

informative with regards to clustering the tumor cell lines. 

The MIT data set (discussed in Section 3.2) contains gene expression data on 7,129 

genes from 60 cancer cell lines.  As before, these 60 cell lines should segregate into 9 known 

tumor types.  Table 3.16 shows how well the various clustering methods agree using the 

Pearson correlation similarity measure.   

 
Table 3.16: MIT Data Cluster Agreement for the Pearson Correlation Similarity Measure 

Comparison Kappa Weighted Kappa RI ARI 
 N R BC N R BC   
GS vs. AL 0.01 

(0*,0.08) 
0.03 
(0*,0.11) 

0.15 
(0.04,0.26) 

0.04 
(0*,0.15) 

0.07 
(0*,0.19) 

0.11 
(0.01,0.21) 

0.49 0.02 

GS vs. KM 0* 
(0*,0.01) 

0* 
(0*,0.01) 

0.34 
(0.20,0.48) 

0.06 
(0*,0.22) 

0.02 
(0*,0.18) 

0.41 
(0.24,0.58) 

0.82 0.16 

AL vs. KM 0.04 
(0*,0.11) 

0.03 
(0*,0.09) 

0.14 
(0.04,0.24) 

0.05 
(0*,0.14) 

0.12 
(0*,0.26) 

0.09 
(0*,0.21) 

0.55 0.13 

where RI = Rand Index, ARI = Adjusted Rand Index 
GS = gold standard, KM = k-means, AL = average linkage 

N = naïve labeling, R = ranked labeling, BC = best case labeling 
Numbers in ()’s represent 95% confidence intervals 

* = negative calculated value was set to zero 
 

 For the MIT data in Table 3.16, the maximum best case clustering labeling kappa and 

weighted kappa statistics indicate that the gold standard and k-means clusters agree the best 

(kappa = 0.34, adjusted kappa = 0.41).   The Rand and adjusted Rand indices further support 

this conclusion (RI = 0.82, ARI = 0.16).  The average linkage and k-means cluster 

algorithms agree weakly with each other (RI = 0.55, ARI = 0.13).  By comparing Tables 
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3.14, 3.15, and 3.16, it can be seen that the Ross data set reproduces the actual tumor clusters 

best, with the MIT data set second best and the Millenium group last.  There is a possibility 

that since the Millenium data was collected mainly for technology demonstration purposes, 

the data was not subjected to a high level of quality control and, as a consequence, the 

clustering algorithms do not reproduce the actual clusters as well. 

 The final comparison examines the cluster agreement between the Ross, Millenium, 

and MIT data sets introduced in Section 3.2.  These comparisons are presented in Table 3.17.  

 
Table 3.17: Cluster Agreement of 3 Data Sets Average Linkage and K-means Cluster 

Algorithms Using Pearson Correlation Similarity Measures 
Comparison Kappa Weighted Kappa RI ARI 
 N R BC N R BC   
AL(R)/AL(Ml) 0.06 

(0*,0.17) 
0* 
(0*,0.03) 

0.01 
(0*,0.13) 

0.15 
(0.02,0.27) 

0* 
(0*,0.01) 

0* 
(0*,0.14) 

0.51 0* 

AL(R)/AL(MIT) 0.03 
(0*,0.10) 

0* 
(0*,0.02) 

0.07 
(0*,0.15) 

0.00 
(0*,0.14) 

0* 
(0*,0.09) 

0.09 
(0*,0.27) 

0.48 0.01 

AL(Ml)/AL(MIT) 0* 
(0*,0.03) 

0.01 
(0*,0.16) 

0.04 
(0*,0.22) 

0* 
(0*,0.01) 

0.08 
(0*,0.35) 

0* 
(0*,0.08) 

0.49 0* 

KM(R)/KM(Ml) 0* 
(0*,0.04) 

0.02 
(0*,0.13) 

0.10 
(0*,0.23) 

0* 
(0*,0.12) 

0.06 
(0*,0.24) 

0.06 
(0*,0.24) 

0.71 0* 

KM(R)/KM(MIT) 0.05 
(0*,0.14) 

0* 
(0*,0.09) 

0.16 
(0.05,0.28) 

0* 
(0*,0.07) 

0.14 
(0*,0.31) 

0.10 
(0*,0.25) 

0.76 0.08 

KM(Ml)/KM(MIT) 0* 
(0*,0.01) 

0* 
(0*,0.06) 

0.20 
(0.08,0.31) 

0* 
(0*,0.01) 

0* 
(0*,0.08) 

0.08 
(0*,0.22) 

0.76 0.07 

where RI = Rand Index, ARI = Adjusted Rand Index 
KM = k-means, AL = average linkage 

R = Ross data set, Ml = Millenium Data Set, MIT = MIT data set 
N = naïve labeling, R = ranked labeling, BC = best case labeling 

Numbers in ()’s represent 95% confidence intervals 
* = negative calculated value was set to zero 

  

All of the comparisons in Table 3.17 are made using the Pearson correlation 

similarity measures.  Examining the average linkage results shows that for the best case 

cluster labeling, the kappa (0.07) and weighted kappa (0.09) statistics take on their maximum 

values for the Ross versus MIT data set comparisons.  These values indicate only weak 
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agreement.  The Rand index is highest for the Ross versus Millenium data set comparisons 

(RI = 0.51).  However, this index differs only slightly from the Rand index values for the 

other two comparisons.  Finally, the only non-zero adjusted Rand index is for the Ross 

versus MIT data set comparison (RI = 0.01).  These results indicate that the cluster 

agreement is strongest between the Ross and MIT data sets.   

 For the k-means cluster comparisons in Table 3.17, the kappa statistic is greatest 

(0.20) for the Millenium versus MIT data set comparison.  However, the weighted kappa 

statistic is greatest (0.10) for the Ross versus MIT data set comparison.  The Rand index is 

tied at a maximum value for the Ross versus MIT data set comparison (RI = 0.76), while the 

adjusted Rand index achieves its maximum value for this comparison (ARI = 0.08).  Notice 

that the k-means cluster result comparisons tend to have greater Rand and adjusted Rand 

index values than the average linkage cluster result comparisons.  This suggests that the k-

means algorithm may be doing a better job at extracting cluster information than the average 

linkage algorithm.  Table 3.17 illustrates that even among microarray experiments that target 

the same genes and cell lines, there is not good agreement on how to cluster the cell lines 

into the nine tumor types.   

 
3.6 Conclusion 
 

This chapter presented several methods for labeling clusters and measuring the 

similarity between the cluster results.  This is meant to be an introduction to these issues, as 

there is little in the literature about labeling clusters prior to comparison.  The comparisons 

were made using cluster results from the average linkage and k-means clustering algorithms 

using the Euclidean distance and Pearson correlation similarity measures.  Three microarray 
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data sets were examined.  Empirical evidence suggested that the choice of the cluster 

agreement measure and how one labels the clusters strongly effects how well the clusters are 

said to agree.  The best case cluster labeling algorithm consistently improved the agreement 

between two competing clustering algorithms.  One could use this algorithm to compare three 

or more clustering techniques by running the algorithm for each pairwise comparison of the 

methods.  This labeling algorithm may not have arrived at the optimum cluster labels, but has 

the advantage of being easy to automate.  A more exhaustive manual assignment of cluster 

labels may further improve cluster agreement, but this is not practical for large data sets.  The 

measures of agreement should be treated relative to each other rather than strictly interpreted 

based on magnitudes. 

The results of the average linkage clustering algorithm appeared to be more sensitive 

to a change in distance measures than the k-means clustering algorithm.  Personal experience 

in analyzing a range of microarray data suggests that the Pearson correlation similarity 

measure helps to replicate the true clusters the best.  The Pearson correlation is defined as: 
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where the i and j subscripts refer to specific genes and G is the total number of genes.  

However, it is not possible to make a general statement as to what distance measure to use, 

as it varies according to the data.   
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The k-means algorithm clusters the data into a user specified number of clusters.  An 

advantage of the average linkage clustering algorithm is that the data can be represented 

hierarchically in a dendrogram which the user can analyze visually.  Average linkage 

clustering does not require a rigid adherence to a given number of clusters.  Dendrograms are 

interpreted at a specific level according to the distance between the elements in clusters.  One 

can think of a dendrogram as a tree in which the longer branches indicate clusters which are 

less homogenous.  For the average linkage cluster results presented in this chapter, the 

dendrogram was interpreted at the distance for which the tree contained nine clusters because 

there are nine known tumor groups.  This may not be the optimal number of clusters, as the 

nine tumor groups may be further divisible based on their gene expression patterns.  For 

most applications, the true number of groups is unknown.  

The results of the cluster analysis of the three data sets (Ross, MIT, and Millenium) 

did not compare favorably.  This illustrates the difficulty in comparing microarray data 

generated from different experiments.  This disagreement could have come from attempting 

to compare experiments run for different purposes using the fundamentally different cDNA 

and Affymetrix designs and perhaps would have improved had a filtering method been 

applied.  (Data filtering is discussed in Chapter 2.)  The differences also could have arisen 

from using independent cell samples or varying experimental conditions and procedures.  

One can imagine how these difficulties might be compounded when clustering over 

thousands of genes instead of 60 cancer cell lines.  Solving these problems is a focus of 

microarray research today.  
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The average linkage and k-means clustering methods are both non-parametric and 

require the user to select a desired number of clusters (either by choosing a level to cut the 

dendrogram at for the average linkage case or choosing a number of clusters before running 

the model for the k-means case).  Choosing the appropriate number of clusters is difficult 

since there is no statistic available indicating which clustering results in the “best” groups of 

observations.  One common approach to this problem is to try to select a method which 

minimizes the within cluster variances and maximizes the between cluster variances.  Another 

possibility is to apply a parametric clustering technique, which requires making certain 

assumptions about the distribution of the data.  The advantage of using a parametric clustering 

technique is that statistically based criteria are available for evaluating how well the model 

clusters the data.  Parametric clustering techniques are discussed in Chapters 4 and 5. 
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Chapter 4 
 

Parametric Clustering 

 
4.1 Introduction 

4.1.1 Parametric Models for Clustering 

Parametric models are increasingly used in the field of cluster analysis (McLachlan and 

Basford, 1988; Kerr and Churchill, 2001).  As Aitkin and Aitkin (1996) wrote, “When 

clustering samples from a population, no clustering method is a priori believable without a 

statistical model.”  Parametric models help to formalize cluster analysis by allowing statistical 

models to be developed and tested.  One  type of parametric cluster analysis uses a class of 

models known as mixture models.  Using mixture models, a likelihood based approach is 

applied to cluster experimental data.  The mixture models approach assumes that the 

observations for the entities to be clustered are from a mixture of a specified number of groups 

in various proportions.  By assuming a parametric form for the density function in each group, 

a likelihood function can be formed in terms of a mixture density.  The unknown parameters of 

the distribution can be estimated by the method of maximum likelihood.  The maximum 

likelihood (ML) equations for mixture models are nonlinear, and, therefore, they are solved 

iteratively.  This process leads to estimates of cluster specific parameters as well as the 

proportion of observations falling in each cluster and the posterior probability of each 

observation falling in a specific cluster.  Clustering proceeds by assigning each entity to a 
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group based on the relative value of the estimated posterior probability of belonging to that 

group compared with the posterior probabilities of belonging to the other groups.  Karl Pearson 

(1894) was one of the first to apply parametric mixture models.  Pearson fitted a two 

component univariate normal mixture model using the method of moments to a set of 

measurements on the ratio of forehead to body length on 1,000 crabs.  This data set is 

reanalyzed in Section 4.3.6. 

The type of mixture model used in cluster analysis is often called a finite mixture 

model because of the assumption that there are a finite number, C, of groups in the data.  If at 

least one of the mixture components comes from a discrete distribution (such as the 

multinomial), the mixture model approach is sometimes called latent class analysis ( 

McLachlan and Peel, 2000; Everitt et al., 2001).  Latent class analysis dates back to Lazarsfeld 

(1950) and has been widely applied in the social sciences.  This dissertation focuses on finite 

mixture models.  

 One of the first applications of finite mixture models to microarray data was by 

Ghosh and Chinnaiyan (2002).  They define normal mixture models and develop the 

Expectation/Maximization algorithm for fitting these models using the approach discussed in 

Section 4.3.  They apply a variety of constraints on the cluster structure.  The method 

proposed in this dissertation relaxes some of these constraints.  One of the advantages for 

using mixture models for microarray data is that they provide a statistical criterion for 

assessing the number of  clusters present in the data.  A strong assumption made in fitting 

mixture models to microarray data is that the genes are independent and identically 

distributed according to the mixture density defined in Equation 4.2.  More work is needed in 
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order to relax this assumption.  (One way of doing this may be to fit multivariate mixture 

models, as suggested in Chapter 6.)  Ghosh and Chinnaiyan (2002) suggest the Bayesian 

Information Criterion (discussed in Section 4.3.5) as a statistic useful for comparing mixture 

models having different numbers of clusters.  They apply average linkage hierarchical 

clustering using the Euclidean distance measure to obtain starting values for fitting mixture 

models.  They comment that convergence problems frequently occurred when using these 

starting values and suggest using random partitions of the data to generate starting values in 

such cases.  The results of a k-means cluster analysis to provide the starting values is found 

in this dissertation to lead to better convergence properties.  When clustering across samples, 

Ghosh and Chinnaiyan (2002) comment that the number of samples is typically much 

smaller than the number of genes.  For such situations, they suggest reducing the dimension 

of the data by using principal components analysis.  This method does not reduce the 

dimensionality enough in larger microarray experiments.  An alternative method of filtering 

the genes is proposed in Section 4.3.8.  Ghosh and Chinnaiyan (2002) analyze two 

microarray datasets.  The first is from a malignant melanoma study reported by Bittner et al. 

(2000).  There were 31 melanoma samples and 3,613 genes included in the analysis.  The 

data were normalized using the usual log corrected intensity ratios.  They found two clusters 

of melanomas – one of size 19 and the other of size 12.  They did not report the results of 

clustering the genes.  The second microarray dataset was from a prostate cancer study 

(Dhanasekaran et al., 2001).  There were 26 samples from 5 different biopsy locations.  

There were 3,955 genes included in the analysis.  They clustered the genes and investigated 
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the results for cluster sizes of 250, 1000, and 2000.  For 250 clusters, several biologically 

plausible groups of genes were found. 

 Several other papers which apply mixture models to microarray data have been 

published.  Mjolsness  et al. (2000) apply mixture models to determine the number of 

clusters present in a microarray data set.  They select the “optimal” model based on the 

maximum log likelihood.  They discuss a process known as circuit inference which uses 

simulated annealing to establish a network of connection strengths similar those of a neural 

network (neural networks are briefly discussed in Chapter 6).  McLachlan et al. (2002) 

suggest applying mixture models as a gene filtering tool.  They select a subset of genes by 

fitting mixtures of t distributions to rank the genes in order of increasing size of the 

likelihood ratio statistic for the test of including the gene in the model versus not.  They 

introduce a software package called EMMIX-GENE to perform this ranking.  Pan (2002) 

applies the normal mixture model suggested by Ghosh and Chinnaiyan (2002) to cluster 

microarray data on the susceptibility of rats to ear infections.  He found three clusters, two of 

which were attributed genes with no altered expression levels and one of which contained at 

least 30 genes having differential expression levels.  Allison et al. (2002) apply mixture 

models to cluster p-values indicating whether or not differential gene expression is present.  

This approach is only relevant in the sense that mixture models were applied. 

 
4.1.2 Introduction to the Expectation/Maximization (EM) Algorithm 

 The Expectation/Maximization (EM) algorithm is a two-stage iterative algorithm 

useful for calculating likelihood estimates when the data are incomplete.  Incomplete data 

occur when observations on random variables are missing or censored.  In the mixture model 
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case, the indicator variables that assign elements to the various clusters are unobserved and can 

be treated as missing, thus defining the incomplete data.  The EM algorithm allows parameter 

estimates to be obtained under such circumstances.  The EM algorithm consists of expectation 

and maximization steps.  The expectation step estimates the incomplete data by calculating 

expected values conditional on the observed data.  Once the incomplete data are estimated in 

the expectation step, the maximum likelihood estimates of the parameters are calculated in the 

maximization step.  The EM algorithm requires starting values for the parameter estimates to 

be input for the first expectation step.  The EM algorithm is developed for the mixture model 

case in Section 4.3.2.  In general, the EM algorithm consists of the following steps: 

1. Replace the missing values by conditional expectations 
2. Estimate the parameter values by the maximum likelihood method. 
3. Iterate 

a. Step 1 using the estimated parameter values as the true values. 
b. Step 2 using the estimated values as “observed” values, iterating until 

convergence. 
 

The ideas underlying the EM algorithm were first discussed by Orchard and Woodbury 

(1972).  The EM algorithm was formally developed by Dempster et al. (1977).  The 

application of the EM algorithm to clustering problems is discussed in this dissertation.  For 

more detailed information on the development and use of the EM algorithm, see Little and 

Rubin (1987) or McLachlan and Krishnan (1997).   

 
4.1.3 Microarray Data 

Microarray experiments are becoming cheaper and easier to perform with the help of 

popular designs such as the dye-swap, reference, and loop designs (Kerr and Churchill, 2001).  

The two major platforms on which microarray experiments are performed are the Affymetrix 
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and complementary DNA (cDNA).  The focus of this chapter is on the analysis of cDNA 

arrays.  Regardless of the platform chosen, microarrays are setup as two dimensional plates 

(often made of glass) containing a large number of wells or areas onto which the probes are 

placed.  Through a highly automated process, the probes are placed, or spotted, onto the 

microarrays.  The identity of the spot is retained by keeping track of its position on the array.  

Standard identifying characteristics include, for example, the cell type or variety, replicate 

number, the gene which the probe represents, etc.  Each probe is typically spotted multiple 

times on an array in order to help to control technical variability.  For more information on 

microarray designs, see Section 1.1.   

For cDNA microarrays, mRNA is extracted from the cells and hybridized to form the 

cDNA samples.  These samples are usually labeled with a red (Cy3) and/or a green (Cy5) dye.  

The microarrays are “read” by shining a laser through a particular spot on the array and 

recording the fluorescence value.  The fluorescence value is indicative of the abundance of the 

gene for that sample.  Normalization methods attempt to transform the data from different 

chips in such a way that they are comparable.  Normalization is often performed using some 

function involving the background values in order to more accurately compare arrays having 

different backgrounds.  One typical normalization approach is to subtract the background 

fluorescence value from the fluorescence value for the signal of interest.  A transformation, 

such as the logarithm, is usually performed on this corrected value.  The use of this 

background corrected value helps to separate the signal from the background.  For more 

information on microarray data normalization, see Quackenbush (2001, 2002).  Typical 
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analyses performed on the fluorescence values include cluster and classification analyses 

which may attempt to find genes which are expressed in specific biological processes. 

 
4.1.4 Chapter Contents 

This dissertation applies parametric clustering models to both simulated and 

experimental microarray data.  The advantages of using parametric models for clustering are 

discussed.  Mixture model theory is introduced.  The Expectation/Maximization (EM) 

algorithm is outlined as an iterative likelihood technique useful for obtaining parameter 

estimates for the mixture model.  Microarray data are described.  Prior applications of mixture 

models to microarray data are reviewed.  The data set from Ross et al. (2000) is introduced.  

The one dimensional normal mixture model is formulated.  The theory for implementing the 

EM algorithm is developed.  An extension of the EM algorithm called the EM/Newton-

Raphson hybrid algorithm is explored for accelerating convergence.  Confidence interval 

formulas are derived for the estimates of the parameters and the posterior probabilities of a 

given observation belonging to a specific cluster.  Techniques for selecting the model having 

the optimal number of clusters are described.  2-DCluster, a software package developed for 

this dissertation, implements these methods and calculates the appropriate confidence intervals 

(see the 2-DCluster Appendix for the software documentation and availability).  Data are 

simulated, analyzed, and discussed.  Experimental data from the Ross et al. (2000) microarray 

experiment are analyzed, followed by a discussion of the results.   
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4.2 Introduction to the Ross et al. (2000) Data Set 

The National Cancer Institute’s (NCI) Developmental Therapeutics Program (DTP) has 

intensively studied 60 cancer cell lines (Ross et al., 2000), which are known as the NCI 60.  

The 60 cell lines are from the tumor types listed in Table 4.1.   

 
Table 4.1: Nine Tumor Types in the Ross Data Set 

Tumor Type Number of Cell Lines 
Breast Cancer 8 
Central Nervous System Cancer 6 
Colon Cancer 7 
Leukemia 6 
Melanoma 8 
Non-Small Cell Lung Cancer 9 
Ovarian Cancer 6 
Prostate Cancer 2 
Renal Cancer 8 

 

Using the two color Complementary DNA (cDNA) design, microarrays were prepared 

by robotically spotting 9,703 human cDNAs on glass microscope slides.  The cDNAs included 

approximately 8,000 unique genes.  Each hybridization compared Cy5 labeled cDNA reverse 

transcribed from mRNA isolated from one of the cell lines with Cy3 labeled cDNA reverse 

transcribed from a reference mRNA sample.  The reference sample, used in all of the 

hybridizations, was prepared by combining an equal mixture of mRNA from 12 of the cell 

lines.  Only 6,165 genes had complete data for all of the 60 cell lines.  These values were 

transformed using the usual log background corrected ratio for the two channels.  The 

investigators presented the results from an average linkage cluster analysis using Pearson’s 

correlation as the similarity measure.  They found that cell lines with common tissues of origin 

tended to cluster together.  Cluster analyses were repeated using different subsets of genes to 
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assess cluster robustness.  The authors conclude that the clusters seem to be reasonably robust.  

A major goal of this experiment was to examine the chemosensitivity of the NCI 60 to about 

70,000 different chemical compounds.  The chemosensitivity data has been analyzed by Ross 

et al. (2000) as well as in separate studies by Paull et al. (1989), van Osdol et al. (1994), and 

Weinstein et al. (1992, 1997).  The chemosensitivity data is not discussed in this dissertation.   

 
4.3 The One Dimensional Normal Mixture Model 

Mixture models may be formed from a variety of component distributions.  This 

dissertation focuses on a finite normal mixture model in which the mixture is formed from C 

univariate normal densities in various proportions ( Cπ ).  (For more information on mixture 

densities having non-normal components or multivariate component densities, see Everitt and 

Hand (1981) or Titterington et al. (1985) ).   

Normal mixture distributions have three general forms.  The first looks like a normal 

density curve as shown in Figure 4.1.  This mixture occurs when the normal components have 

similar means but different variances.  This type of mixture is the most difficult to fit since an 

identifiability problem will likely arise. 

 

 

Figure 4.1: Normal Mixture with Similar Means but Different Variances 
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The second type of normal mixture density takes on a multimodal form.  Figure 4.2 

shows such a density for a two component normal mixture case.  This mixture occurs when the 

normal components have different means which are “far enough” apart in relation to their 

variances to form distinct modes on the curve.  The variances could also differ for this type of 

normal mixture.  Mixture models work best for estimating the normal component parameters 

of such distributions. 

 

 

Figure 4.2: Two Component Normal Mixture 

 
The third type of normal mixture density takes on various shapes and usually occurs 

when the means are similar but the variances differ widely.  Figure 4.3 shows an example of a 

normal mixture for the skewed case.  Similarly to unimodal mixtures (Figure 4.1), it is difficult 

to accurately estimate the parameters for these types of mixtures. 

 
Figure 4.3: Skewed Normal Mixture 
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In this dissertation, the applications considered are expected to be multimodal (Figure 

4.2).  The parameters could become increasingly difficult to estimate and models could take 

longer to converge the further a mixture distribution deviates from this form.  For the case of 

microarray data, there is no strong reason to suspect that only the variances of the gene 

expression values differ significantly but not the means.  The multimodal nature of the data is 

not expected to be as dramatic as that shown in Figure 4.2 when plotted.  However, the data are 

anticipated to be “close enough” to this form to allow the parameters to be estimated.  

Additional assumptions are that there are a small number of clusters and that not all of the 

observations come from different distributions. 

 
4.3.1 Introduction to the Model 

The normal mixture distribution is derived from a mixture of C normal distributions 

( )2
k;  ,  kxφ µ σ , where kµ  is the mean for the thk component and 2

kσ is the variance for the 

thk component, 1, ,k C= … .  The density ( )2
k;  ,  kxφ µ σ  is standard notation for the normal 

density, 
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A random variable, Y, is distributed as a normal mixture distribution if the density of Y is of the 

form: 
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where kπ  is the proportion of observations falling in the thk  group,  
1
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 The distributional properties of Y are described below for the two component mixture 

case.  Suppose that the first component of the mixture density has the distribution 

( )1
2

1 1;  ,  x xφ µ σ  and that the second component has distribution ( )2
2

2 2;  ,  x xφ µ σ .  A random 

variable, Y, is distributed as a two component normal mixture distribution having a density of 

the form: 

 

 ( ) ( ) ( ) ( )2 2 2 2
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The expected value of Y is found by 
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Using the usual rules for calculating expected values,  
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The general form for the expected value of Y in a C component mixture can be shown to be 
 
 

 [ ]
1

.
C

k k
k

E Y π µ
=

= ∑  (4.6) 

 
 

The variance of Y by definition is [ ] [ ]( )22 .V Y E Y E Y = −  
  The expected value of Y 

is already calculated (Equation 4.5).  The expected value of 2Y is 
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Simplifying as in Equation 4.5 now for 2Y  and applying ( )2 2 2E Y µ σ= +  for the ( )2,N µ σ  

case yields: 

 

 ( ) ( )( )2 2 2 2 2
1 1 2 21 .E Y π µ σ π µ σ  = + + − +  

 (4.8) 

 

Plugging [ ]E Y  and 2E Y 
  

 into the variance equation yields: 
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 [ ] ( ) ( )( ) ( ) 22 2 2 2
1 1 2 2 1 21  + 1 .V Y π µ σ π µ σ πµ π µ = + + − + − −    

 (4.9) 

 
The general form for the variance of Y in a C component mixture can be shown to be 

 

 [ ] ( )
2

2 2

1 1
.

C C
k k kk k

k k
V Y π µ σ π µ

= =

 
= + −  

  
∑ ∑  (4.10) 

 
The shape of the two component normal mixture distribution depends on the 

proportion, component means, and component variances.  Figure 4.2 gave an example of a two 

component mixture distribution.  The following figures demonstrate what happens when the 

component means and variances change for a simulated two component normal mixture 

distribution.   

 Figure 4.4 shows the density for the two component normal mixture case with different 

means and equal variances.  Note that two distinct modes are present which makes parameter 

estimation less difficult. 

 

0.5 3.0 5.5 8.0 10.5 13.0 15.5 18.0
Value  

Figure 4.4: Two Component Normal Mixture Density 
( 10,000N = , 0.3π = , 1 5µ = , 2 10µ = , 2

1 2σ = , 2
2 2σ = ) 
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Figure 4.5 shows the density for the two component normal mixture case with equal 

means and different variances. 

 

-6 -1 4 9 14
Value  

Figure 4.5: Two Component Normal Mixture Density  
( 10,000N = , 0.3π = , 1 5µ = , 2 5µ = , 2

1 2σ = , 2
2 4σ = ) 

 
 

It is very difficult to estimate parameters in such a situation because there are no 

distinct modes in the distribution due to the means being identical.  Essentially, the mixture 

density is indistinguishable from a normal distribution or a t distribution.  The curve is rather 

narrow and peaked due to the small variances. 

Figure 4.6 shows the density for the two component normal mixture case with different 

means and different variances.  As described earlier in this section, this is the type of mixture 

that is expected for the case of microarray data.  This figure looks very similar to Figure 4.4, 

although the two modes are less distinct.  The modes will become more apparent if the 

variances are small in relationship to their respective means.  The parameters can be readily 

estimated in such a case.    
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3 8 13 18
Value  

Figure 4.6: Two Component Normal Mixture Density  
( 10,000N = , 0.3π = , 1 5µ = , 2 10µ = , 2

1 2σ = , 2
2 4σ = ) 

 
 
If both of the means and both of the variances are the same, the mixture density is 

identical to the regular normal density.  In this case, the data cannot be clustered, as only one 

group is present. 

 
4.3.2 Parameter Estimation for the Normal Mixture Model 

Suppose that a random sample of N observations is obtained from a normal mixture as 

defined in Section 4.3.1.  The likelihood for the N observations is given by the joint density of 

the sample: 

 ( ) ( )2
k

11
;  , ,   ;  ,  

N C
k i k

ki
L yπ φ µ σ

==
= ∑∏2y π µ σ  (4.11) 

 
To obtain the maximum likelihood estimates (MLE’s), the log likelihood,  

 

 ( ) ( ) ( )2
k

1 1
;  , ,  log ;  , ,  log  ;  ,   ,

N C
k i k

i k
L yπ φ µ σ

= =

  = =       
∑ ∑2 2y π µ σ y π µ σA  (4.12) 
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is maximized with respect to the parameters 2,  ,  and k k kπ µ σ .  The MLE’s are found by 

taking the first partial derivatives of the log likelihood with respect to the parameters of 

interest, setting them equal to zero, and solving. 

The first  derivatives were given for the normal mixture distribution by Hasselblad 

(1966).  For convenience, Hasselblad’s notation is introduced below and is used from this 

point forward.  Let N be the total number of observations with 1, ,i N= … .  Let C be the 

number of clusters with 1, ,k C= … .  Let iy  be the thi observation, kπ  be the proportion of 

total observations contained in cluster k, and kµ  and 2
kσ  be the mean and variance of the 

observations in cluster k, respectively.  Let the distribution of the thk  normal mixture 

component be represented as: 

 

 ( ) ( )22
2

1 1;  ,  exp .
2 2

ik i k i kk
k k

f y yφ µ σ µ
πσ σ

 
 = = − −
 
 

 (4.13) 

 
Note that the i subscript in Equation 4.13 is not strictly necessary, as the distribution only 

changes based on the cluster, not the observation.  However, the i is included in order to be 

consistent with Hasselblad’s notation.  The normal mixture distribution of the random variable 

Y is written as: 

 

 ( ) ( )
C

2
kk

1 k=1
;  , ,   ;  ,  = .i

C
i y i k i k ik

k
F f y y fπ φ µ σ π

=
= = ∑ ∑2π µ σ  (4.14) 
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The derivatives are calculated under the constraint that 
1

1
1

C
C k

k
π π

−

=
= − ∑ .   

The first partial derivatives of the log likelihood are shown below. 

 

 
1

,   k 1,2, , 1                    
N

ik iC
k ii

f f C
Fπ =

−∂
= = −

∂ ∑A …  (4.15) 

 ( )
2

1
,   k 1, 2, ,               

N
k ik i k

k i ik

f y
C

F

π µ
µ σ=

−∂
= =

∂ ∑A …  (4.16) 

 ( )2
3

1

1 ,  k 1,2, ,
N

i kk ik
k i ki k

yf C
F

µπ
σ σσ=

 −∂  = − =
∂  

 
∑A …  (4.17) 

 
These equations are nonlinear and therefore must be solved iteratively.  The usual 

method for this circumstance is the Newton Raphson (NR) algorithm.  However, the NR 

algorithm may have convergence problems and sometimes converges to a local maximum 

(Heath, 1997).  Therefore, the Expectation/Maximization (EM) algorithm is suggested, as it 

should converge to the global maximum.  The EM algorithm converges most of the time. 

To develop the EM algorithm, the first requirement is the definition of the incomplete 

data (Dempster et al., 1977).  For the mixture model, the incomplete data are defined by the 

indicator variables that assign the observations to specific clusters.  These indicator variables 

may be written as: 

 

 1,  if   the  cluster
0,  otherwise

th
iik

y kI
 ∈= 


. (4.18) 
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The distributions of these indicator variables are specified by the posterior probabilities, ikα .  

In other words, ( )1|ik i ikP I y α= = .   In the Expectation stage of the EM algorithm, the 

complete data are obtained by estimating ikα .  The value ikα  represents the posterior 

probability of the thi  observation falling in the thk cluster.  The posterior probability is 

estimated by taking a weighted average over the C component densities.  That is, 

 

 [ ] [ ] l
l l l

l l l

2
k

2
r

1

 ;  ,  
| 1| .

 ;  ,  

k i k
ikik ik C

r i r
r

y
E I P I

y

π φ µ σ
α

π φ µ σ
=

 
 
 = = = =
 
 
 

∑
y y  (4.19) 

 
Notice that the number of unknowns in this step is 3 1C − .  Thus, 3 1C −  initial values 

need to be specified: C-1 for the proportions, C for the means, and C for the variances.  After 

the initial iteration, new estimates for these values are obtained from the maximization step of 

the EM algorithm. 

 The maximization step of the EM algorithm uses the completed data to estimate the 

parameters of the distribution using maximum likelihood techniques.  Once the observations 

falling into different groups are identified, obtaining the 3 1C −  estimates of the proportions, 

means, and variances is straightforward and explicit solutions exist. 

Equations 4.20 through 4.22 give the maximum likelihood estimates for the 

proportions, means, and variances for the normal mixture problem.  For details of these 

derivations, see Appendix 4.1.  The estimate for the proportion of observations falling in the 

thk  cluster, kπ , is: 
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 l
l

1 .

N
ik

ik N

α

π ==
∑

 (4.20) 

 
The estimate for the mean of the thk cluster, kµ , is: 

 

 l
l

l

1

1

.

N
iki

i
k N

ik
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y α
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α

=

=

=
∑

∑
 (4.21) 

 
The estimate for the variance of the thk cluster, 2

kσ , is: 

 

 l
l l( )

l

2

2 1

1

.

N
ik i k

ik N
ik

i

yα µ

σ

α

=

=

−

=
∑

∑
 (4.22) 

 
For the case of homogenous variances among the C clusters, the 2

kσ ’s are first 

estimated for all of the clusters.  Once these estimates are found, the new common variance is 

found by: 

 

 l

l l2

2 1 1  .

C N
k ik

k i
N

σ α

σ = =

 
 
 
 =

∑ ∑
 (4.23) 
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Each iteration of the EM algorithm involves calculating equations 4.19 through 4.22 in 

sequence.  For the first iteration, the starting values are used to calculate l ikα .  At the end of 

each iteration, a check is made to see if the EM algorithm converged.  There are a number of 

ways that this check can be performed.  The approach taken by McLachlan and Peel (2000) is 

used in this dissertation.  They check for convergence by examining all C of the proportion 

( kπ ) estimates and seeing if the change from the previous iteration’s estimate is less than 

some tolerance value.  If any one of the C estimates has changed by some amount greater than 

the tolerance value, the algorithm continues.  The justification for this stopping rule is that the 

proportions are the most important parameters to estimate accurately because they indicate the 

relative sizes of the clusters to the user and contain the l
1

N
ik

i
α

=
∑  terms which are involved in 

both the mean and variance estimates.  Other stopping rules are possible, such as terminating 

when the means or variances change less than a specified tolerance between iterations.  

However, such rules would place too many restrictions on the algorithm and the convergence 

time could drastically increase. 

Cluster membership is assigned by calculating the C estimates of the l ikα ’s for all of 

the iy ’s and assigning the observation to the cluster for which the posterior probability of 

belonging is the greatest.  However, for values of l ikα  that are very close to each other, 

assigning an individual to a cluster based on the maximum posterior probability may not be 

optimal, since competing cluster assignments may be equally “good”.  All of the posterior 

probabilities are available from the  mixture model fit, and the user can evaluate the effects of 
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different cluster assignments.  If two posterior probabilities are tied at the maximum value, one 

can either randomly select a cluster to assign the observation to or place the observation in both 

of the clusters.  For posterior probabilities that are very close to each other, one could try 

different cluster assignments and evaluate how well the clusters fit the data using the statistics 

introduced in Section 4.3.5. 

 
4.3.3 The EM/Newton-Raphson Hybrid Algorithm 

 The EM algorithm for mixture models, although an improvement over the Newton-

Raphson algorithm, is often slow to converge.  The convergence rate depends on several 

factors, such as the number of clusters, the number of observations, how close the parameters 

for the different clusters are to each other, which starting values are chosen, and so on.  A 

number of approaches for speeding up the convergence of the EM algorithm in the mixture 

model case have been proposed in the literature (Aitkin and Aitkin, 1996; Neal and Hinton, 

1998; Bradley et al., 1999).  This dissertation presents the hybrid method proposed by Aitkin 

and Aitkin (1996) that switches back and forth between the EM algorithm and the Newton-

Raphson algorithm. 

 The EM algorithm always converges to the MLE (Dempster et al., 1977) while the NR 

algorithm might converge to a local maximum or minimum or decrease the likelihood between 

iterations.  Although the EM algorithm is much faster to converge to the right neighborhood, it 

is slow to reach the maximum.  On the other hand, the NR algorithm is faster in reaching the 

maximum provided that it is in the right neighborhood.  When the NR algorithm converges, its 

convergence rate is usually quadratic compared to linear for the EM algorithm (Aitkin and 

Aitkin, 1996).  The EM algorithm traverses the likelihood surface in larger steps than the NR 
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algorithm.  Aitkin and Aitkin (1996) proposed the hybrid EM/NR algorithm to exploit the fast 

convergence of the EM algorithm with the local accuracy of the NR algorithm.   

The EM algorithm is described for the normal mixture model case in previous sections.  

The Newton-Raphson algorithm makes use of a first order Taylor series expansion of the 

function being maximized (Heath, 1997):  

 
 ( ) ( ) ( )( )' .f x f h f h x h≈ + −  (4.24) 

 
This motivates the following iteration scheme, known as Newton’s method: 

 

 
( )
( )1 ' ,n

n n
n

f x
x x

f x
+ = −  (4.25) 

 
where n represents the iteration number. 

The Newton-Raphson method is readily extended to find the solutions to a set of 

simultaneous equations (Bickel and Doksum, 2001).  The form of the new iterate may be 

expressed in matrix notation as: 

 

 ( ) ( )1
1 ,n n n n

−
+ = −X X H X B X  (4.26) 

 
where n is the iteration number, X is the vector of parameter estimates, B is the vector of first 

derivatives with respect to the parameters, and H is the Hessian matrix of second derivatives.   

 For example, in the case of a two component normal mixture, there are 

3 1 3*2 1 5C − = − =  parameters present.  The 5x1 vector of parameters, X, takes the form: 
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1

2

1

2

.

π
µ
µ
σ
σ

 
 
 
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 
  

X  (4.27) 

 
The 5x5 Hessian matrix, H, is composed of the second derivatives of the log likelihood 

with respect to the 5 parameters.  Finally, the 5x1 vector, B, contains the first derivatives of the 

log likelihood with respect to the 5 parameters.  The matrices H and B are shown in Equations 

4.28 and 4.29, respectively.  In general, a mixture model with C clusters has 3C – 1 parameters 

that must be estimated.  The dimensions of X, H, and B increase in multiples of 3 as the 

number of clusters increases.  The Newton-Raphson algorithm starts with the initial values and 

iterates Equation 4.26 until convergence is reached.  Note that each iteration requires the 

inversion of a 3C - 1 dimensional matrix.  Matrix inversion is very computationally intensive 

and thus becomes much slower for models having large numbers of clusters.  The algorithm is 

said to converge when successive iterations change the proportion estimates by less than a 

specified tolerance.   

In order to implement the Newton-Raphson algorithm, the first derivatives of the log 

likelihood (for the B matrix) and the second derivatives of the log likelihood (for the H matrix) 

are needed.  These derivatives were derived for the normal mixture distribution by Hasselblad 

(1966).  The notation and first derivatives were defined in Section 4.3.2.  The first derivatives 

are given in Equations 4.15 – 4.17. 
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 (4.28) 
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 (4.29) 

 
The second derivatives of the log likelihood are shown in Equations 4.31 – 4.36.  They 

are obtained by taking the appropriate first derivatives of Equations 4.15 – 4.17.  Define mkδ  

as the Kronecker delta,  

 

 
1, if m

.
0, if mmk

k
k

δ
=

=  ≠
 (4.30) 
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 ( )( )2
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ik iC im iC
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− − −∂
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∂ ∂ ∑A (4.36) 

 
The implementation of the NR algorithm is straightforward.  However, the NR 

algorithm requires the observed information or Hessian matrix, which is complex to calculate 
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for the mixture problem.  The NR algorithm is also much more sensitive to starting values than 

the EM algorithm is.  The NR algorithm sometimes returns negative estimates for σ .  When 

this happens, we follow Aitkin and Aitkin’s (1996) suggestion and change the sign of these 

estimates.  There is also a possibility that the Hessian matrix may not be positive definite and 

thus is non-invertible.  This possibility increases if the starting values are poor.  When this 

happens, the EM algorithm must be used instead. 

 The formulas needed to implement the EM and NR algorithms for the normal mixture 

case are given in Equations 4.15 – 4.36.  The EM/Newton-Raphson hybrid algorithm was 

introduced by Aitkin and Aitkin (1996) to take advantage of the best features of both the EM 

and NR algorithms.  The algorithm is outlined in the flowchart shown in Figure 4.7.   

The steps are referenced by the numbers in parentheses.  The first step is to run the EM 

algorithm 5 times (1).  This helps to ensure that the log-likelihood is non-decreasing so that the 

subsequent NR step will not diverge or decrease the log-likelihood.  Running the EM 

algorithm 5 times comes from Redner and Walker’s (1984) experience that 95% of the change 

in log-likelihood from the initial to the maximum value generally occurred in the first five EM 

iterations.  If the EM algorithm did not converge after 5 iterations, the NR algorithm is run 

until it converges or the likelihood decreases (5 – 14).  If the likelihood decreases, the 

parameter values are set to the average of their values before the likelihood decreased and their 

current values (11).  The NR algorithm is run again with the new parameter values as starting 

values (13).  This process is called step halving.  If 5 step-halvings do not increase the log-

likelihood, then the EM algorithm is run 5 more times (1).  This process is repeated as shown 

in Figure 4.7 until convergence is obtained or a user defined maximum number of iterations is  
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(1)
Run EM Algorithm

5 Times

(2) Did EM
Algorithm
Converge?

(3)
Run NR Algorithm

1 Time

Yes

(4)
Return Results

(5)
Run NR Algorithm

1 Time
No

(6) Did NR
Algorithm
Converge?

Yes

(7)
Did Likelihood

Increase?
No

Yes

(8)
Set Iteration Counter

to 0

No

(9)
Increment Iteration

Counter by 1

(10)
Is Iteration

Number > 5?

(12) Set Parameters
to the Values They

Had Prior to the
Likelihood
Decreasing

Yes

(11) Set Parameters
to Average of

Values Prior to
Likelihood Decrease
and Current Values

No

(13)
Run NR Algorithm

1 Time

(14)
Did Likelihood

Incrrease?

Yes

No

 
Figure 4.7: Flowchart for the EM/Newton-Raphson Hybrid Algorithm 
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reached.  Once the EM/Newton-Raphson hybrid algorithm converges, the parameter estimates 

may be used to calculate confidence intervals (Section 4.3.4) and to assign observations to 

clusters.   

One must be careful to recognize that the EM algorithm estimates the 2
kσ  parameters, 

while the NR algorithm estimates the kσ  parameters (as derived by Hasselblad in 1966).  The 

2
kσ  estimates from the EM step in the hybrid algorithm must be translated by taking the square 

root before using them as inputs for the NR step.  Similarly, one should square the NR 

estimates before using them as inputs for the EM step. 

 The application of the EM/Newton-Raphson hybrid algorithm usually results in a 

significantly reduced number of EM algorithm iterations.  McLachlan and Peel (2000) report 

that, in their experience, the hybrid algorithm converges in 50 – 70 percent of the time required 

for the EM algorithm to converge.  However, the hybrid algorithm requires more overhead for 

implementation.  The Hessian matrix is complex to calculate.  The EM algorithm usually 

converges much faster than the hybrid algorithm for the univariate mixture models presented in 

this dissertation.  The convergence time depends on many things, including the number of 

variables.  The examples McLachlan and Peel (2000) discussed were all multivariate 

applications.  For univariate mixtures, the EM algorithm appears to be more desirable.  The 

hybrid algorithm is best applied to multivariate mixture problems and will not be used in this 

dissertation (due to the faster convergence of the EM algorithm for univariate normal 

mixtures).  However, the 2-DCluster software package does support the hybrid algorithm.    
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4.3.4 Calculating Confidence Intervals 

 In this section, confidence intervals are derived for the posterior probability that the thi  

observation belongs to the thk cluster, or l ikα .  The maximum l ikα  provides an estimate to  

determine which cluster an observation is assigned to.  For values of  the l ikα ’s that are close 

for more than one cluster, a confidence interval may help the user to determine in which cluster 

to place the observation, iy .  If m k≤ confidence intervals for the l ikα ’s  overlap for a given i, 

the observation iy  could be placed in any of the m clusters.  Thus, the confidence intervals for 

l ikα  help to support the use of overlapping clusters.  Overlapping clusters may be desirable in 

some clustering situations. 

 The derivation of the confidence interval for l ikα  makes use of the delta method.  The 

delta method is frequently used for finding the asymptotic variances of functions of parameters 

(Bickel and Doksum, 2001).  Equation 4.37 is obtained by plugging the parameter estimates 

into Equation 4.19, or: 
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The delta method has the form: 
 
 

 l( ) ( ) ( )' ' ,
T

ikV f fα θ θ = Σ   
 (4.38) 
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where θ  represents the vector of unknown parameters in l ikα , which are ,  ,  and k k kπ µ σ .  

The T refers to the matrix transpose operation.  The first derivative of f with respect to these 

parameters is: 
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 (4.39) 

 
The symmetric matrix Σ  is: 
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The derivatives needed for Equation 4.37 are derived below.  The derivative of  l ikα  with 

respect to kπ  is: 
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The derivative of  l ikα  with respect to kµ  is: 
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(4.42) 

 
 
The derivative of  l ikα  with respect to kσ  is: 
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 (4.43) 

 

Note that all of the parameter estimates are required to solve Equations 4.41 – 4.43.  

The elements of Σ  are obtained from the corresponding elements of ( )1I θ− , where I is the 

Fisher information matrix.  This is calculated by taking the negative of the inverse of the 

Hessian matrix defined in Equation 4.28.  The Hessian matrix given in Equation 4.28 does not 

include the estimate for Cπ  since it can be found from the constraint 
1

1
1

C
C k

k
π π

−

=
= − ∑ .  These 

estimates are asymptotically normal, due to the properties of maximum likelihood estimation.  

The missing elements of the Hessian matrix related to Cπ  are obtained by plugging the 
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estimated values into the appropriate derivatives.  Once the algorithm terminates, estimates for 

all of the parameter values are available. 

 A confidence interval for posterior probability, ikα , may be calculated as: 

 

 l l
1 / 2 ( ),ik ikz Varαα α−±  (4.44) 

 
where 1 / 2z α−  is the usual 100(1 / 2)α−  percentile of the standard normal distribution.  For 

example, to obtain 95 percent confidence limits, 0.05α =  and 1 / 2 1.96z α− =  

 Confidence intervals may also be calculated for the cluster specific parameters. For  the 

calculation of the confidence intervals, the covariances between the parameters are set to zero.  

This is justified since the observed covariances are on the order of 1610−  for these data.  This 

is not necessarily true for all microarray data sets.   Equation 4.45 gives the confidence interval 

formula for the group proportion, kπ , as: 

 
 l l

1 / 2 ( ).k kz Varαπ π−±  (4.45) 

 
Equation 4.46 gives the confidence interval formula for the group mean, kµ , as: 

 
 l l

1 / 2 ( ).k kz Varαµ µ−±  (4.46) 

 
Equation 4.47 gives the confidence interval formula for the group standard deviation, kσ .   

 
 l l

1 / 2 ( ).k kz Varασ σ−±  (4.47) 
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By the invariance property of the MLE, the confidence intervals for the group variance, 2
kσ , 

are found by squaring the estimate obtained for kσ  and applying the usual confidence interval 

formula. 

 
4.3.5 Comparing Models With Different Numbers of Clusters 

In practice, the number of clusters is usually unknown.  In this case, several models can 

be fitted using different numbers of clusters.  To help in evaluating which models fit the data 

best, three statistics are useful.  These statistics are the log likelihood (A ), the Akaike 

information criterion (AIC), and the Bayesian information criterion (BIC).  

The usual way of evaluating models is to select the model having the greatest log 

likelihood.  However, the likelihood tends to increase with the number of clusters (McLachlan 

and Peel, 2000).  The greatest log likelihood value occurs when every observation is correctly 

contained in its own cluster.  The log likelihood does not adjust for the number of parameters 

in the model.  Tests such as the likelihood ratio test (LRT) (or scree plots) could be applied to 

select an appropriate number of clusters if the models were nested (Bickel and Doksum, 2001).  

However, mixture models for clusters are not nested because the clusters may not contain the 

same members when they are subdivided.   

Akaike (1974) proposed another method for evaluating model fit known as the Akaike 

information criterion (AIC).  The optimal model according to the AIC is the one that has the 

AIC value closest to zero.  The AIC adjusts the likelihood for the number of parameters, but 

still tends to favor models with large numbers of clusters (McLachlan and Peel, 2000).  The 

AIC value is calculated as: 
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 2   2 ,AIC d= − +A  (4.48) 

 
where A   is the log likelihood value and d is the degrees of freedom for the model.  Despite 

its bias in selecting models with larger numbers of clusters, the AIC is widely used for 

evaluating the number of clusters present in mixture models (Bozdogan and Sclove, 1984; 

Sclove, 1987). 

Schwarz (1978) proposed a method for evaluating model fit known as the Bayesian 

information criterion (BIC).  The model having the BIC value closest to zero is chosen as the 

best fitting model.  The BIC also adjusts for the number of model parameters.  The adjustment 

for the number of parameters is multiplied by the log of the sample size.  This improves on the 

AIC which adjusts by a constant which does not depend on the sample size.  The BIC does not 

seem to favor models having large number of clusters (McLachlan and Peel, 2000).  The BIC 

is calculated as: 

 
 2   log ,BIC d n= − +A  (4.49) 

 
where A  is the log likelihood value, d is the degrees of freedom for the model, and n is the 

sample size.  The general form of the BIC uses a prior but the expression in Equation 4.49 

assumes that the prior has little effect and can be ignored.  McLachlan and Peel (2000) 

performed simulations and found that the BIC performs better than the AIC for choosing 

mixture models having the correct number of clusters.   
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4.3.6 Analysis of Pearson Crab Data 

Karl Pearson (1894) fitted a two component univariate normal mixture model to a set 

of measurements on the ratio of forehead to body length on 1,000 crabs.  The crab data was 

first reported by Weldon (1892).  The data as reported in the article are shown in Table 4.2.   

 
Table 4.2: Pearson Crab Data 

N Interval Range N Interval Range
1 0.580 – 0.583 74 0.640 – 0.643
3 0.584 – 0.587 84 0.644 – 0.647
5 0.588 – 0.591 86 0.648 – 0.651
2 0.592 – 0.595 96 0.652 – 0.655
7 0.596 – 0.599 85 0.656 – 0.659

10 0.600 – 0.603 75 0.660 – 0.663
13 0.604 – 0.607 47 0.664 – 0.667
19 0.608 – 0.611 43 0.668 – 0.671
20 0.612 – 0.615 24 0.672 – 0.675
25 0.616 – 0.619 19 0.676 – 0.679
40 0.620 – 0.623 9 0.680 – 0.683
31 0.624 – 0.627 5 0.684 – 0.687
60 0.628 – 0.631 0 0.688 – 0.691
62 0.632 – 0.635 1 0.692 – 0.695
54 0.636 – 0.639 

 

The 1,000 observations are divided into 29 categories of width 0.004.  The individual 

measurements were not provided.  In order to more accurately represent the original data, each 

observation X was generated in the following manner: 

 
 * 0.004,i jX Uµ= ±  (4.50) 

 
where 1, ,1000i = …  indicates the observation number, jµ  indicates the mean of the thj  class 

interval, 1, , 29j = … , and U indicates a uniform random number on ( )0,1 .  The class variance 
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was set at 0.004.  A two component normal mixture model was fitted to this data.  The results 

are shown in Table 4.3.  Pearson analyzed these data and illustrated two component normal 

mixture models using moment estimators. 

 
Table 4.3: Results of Pearson Crab Data Analysis 

Parameter Starting Value Estimate 95% Confidence Interval 
1π  0.500 0.567 (0.404, 0.731) 

2π  0.500 0.433 (0.269, 0.595) 

1µ  0.500 0.617 (0.606, 0.629) 

2µ  0.600 0.680 (0.671, 0.689) 
2
1σ  0.010 0.001 (0.000*, 0.004) 

2
2σ  0.020 0.001 (0.000*, 0.003) 

*Calculated value was negative. 

 
The model converged in 572 EM algorithm iterations.  The log likelihood was 1779.85, 

the AIC was -3549.71, and the BIC was -3525.16.  Pearson reported proportions of 0.585 and 

0.415 for the two groups using the method of moments.  The method of moments is not 

feasible for fitting models with large numbers of groups due to the complexity of the 

underlying formulas.  The method of moments yields unbiased estimators and is consistent in 

the sense that the estimates should approach the true values as the sample size increases 

(Bickel and Doksum, 2001).  However, maximum likelihood estimation (MLE) has more 

desirable properties.  MLE’s are asymptotically unbiased, have the minimum variance, and are 

asymptotically normal.  MLE’s can be biased for small samples.  In the crab example, the 

sample size is 1,000 and the method of moments results reported by Pearson involved a large 

number of hand calculations.  MLE’s are preferable and are now computationally tractable. 
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Pearson interpreted the presence of two components as evidence that the sample contained two 

species of crabs.  The two distributions show up as modes in the density shown in Figure 4.8. 

 
Figure 4.8: Pearson Crab Data Density Plot 

 
 
 Notice that there is some overlap between the two distributions.  Estimation is more 

difficult for observations falling into the shaded (overlapping) area.  This difficulty is reflected 

by the posterior probabilities both being close to 0.5 for some observations.  For example, for 

one observation the posterior probability of belonging to cluster 1 is 0.52, while the posterior 

probability of belonging to cluster 2 is 0.48.  Determining which cluster to assign the 

observation to is difficult.  One may wish to allow overlapping clusters by including such an 

observation in both clusters. 

 
4.3.7 Analysis of Simulated Data 

Simulated 15 Component Normal Mixtures 

Clustering applications frequently involve more than two clusters.  For illustration 

purposes, three 15 component normal mixture distributions are simulated and analyzed.  The 

first simulation has different proportions, well separated means, and variances that are in a 
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fixed ratio to the proportions.  The second simulation has  equal proportions and different 

means and variances.  The third simulation has equal proportions and variances but different 

means.  SAS code for simulating C component normal mixture distributions is given in 

Appendix 4.2. 

 The data for the first mixture distribution are simulated using the parameter values 

shown in Table 4.4.   

 
Table 4.4: Parameters for 15 Component Normal Mixture Model with Different 
Proportions, Different Means, and Variances in a Fixed Ratio to the Proportions 

Cluster Number Proportion Mean Variance
1 0.200 150.000 15.000
2 0.100 140.000 7.500
3 0.100 130.000 7.500
4 0.050 120.000 3.750
5 0.050 110.000 3.750
6 0.050 100.000 3.750
7 0.050 90.000 3.750
8 0.050 80.000 3.750
9 0.050 70.000 3.750
10 0.050 60.000 3.750
11 0.050 50.000 3.750
12 0.050 40.000 3.750
13 0.050 30.000 3.750
14 0.050 20.000 3.750
15 0.050 10.000 3.750

 

For this simulation, the cluster means are generated according to the formula 

1 110,  where 150.k kµ µ µ−= − =   The cluster variances are generated according to the formula 

2 75 kkσ π= .  This makes the largest variance equal to 15 (when the proportion is 0.2) and the 

smallest variance equal to 3.75 (when the proportions are 0.05).  The variances must change in 
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order for the proportions to differ.  Even for such well separated clusters, the normal mixture 

density is complicated as shown in Figure 4.9. 

5 30 55 80 105 130 155 180
Value  

Figure 4.9: 15 Component Normal Mixture Density Plot for First Simulation 
 

 
Notice that the large mode on the right is due to a large percentage of the observations 

being concentrated in this region.  There were 1,000 observations simulated.  A 15 component 

one dimensional mixture distribution was fitted.  The starting values were generated from a k-

means cluster analysis.  These starting values are shown in Table 4.5. 

Table 4.5: Starting Values for First Simulation of 15 Component Normal Mixture Model  
Cluster Number Proportion Mean Variance

1 0.100 15.425 32.802
2 0.072 33.597 21.432
3 0.066 49.489 9.681
4 0.045 60.289 2.433
5 0.123 141.248 7.844
6 0.116 130.476 5.288
7 0.051 69.376 4.235
8 0.054 120.797 3.332
9 0.017 77.423 2.669
10 0.060 110.506 4.217
11 0.026 81.136 1.430
12 0.038 89.285 1.080
13 0.023 92.125 1.062
14 0.170 151.267 9.368
15 0.039 99.970 3.507
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The model converged in 38 seconds and required 1,057 EM algorithm iterations.  The 

log likelihood for the model was -4782.91, the AIC was 9653.83, and the BIC was 9869.77.  

The parameter estimates are reported in Table 4.6. 

 
Table 4.6: Fit Results for First Simulation of 15 Component Normal Mixture Model 

Actual Parameters Estimated Parameters 
Proportion Mean Variance Proportion Mean Variance 

0.200 150.000 15.000 0.200 150.204 14.668 
0.100 140.000 7.500 0.096 140.028 6.987 
0.100 130.000 7.500 0.115 130.215 5.810 
0.050 120.000 3.750 0.053 120.531 2.325 
0.050 110.000 3.750 0.060 110.489 4.261 
0.050 100.000 3.750 0.039 99.877 3.801 
0.050 90.000 3.750 0.003 93.441 0.007 
0.050 80.000 3.750 0.057 90.126 2.328 
0.050 70.000 3.750 0.031 80.628 2.417 
0.050 60.000 3.750 0.001 77.833 1.193 
0.050 50.000 3.750 0.053 69.594 4.870 
0.050 40.000 3.750 0.045 60.357 2.453 
0.050 30.000 3.750 0.050 50.835 1.691 
0.050 20.000 3.750 0.104 33.309 73.188 
0.050 10.000 3.750 0.084 14.827 36.864 

  

Notice in Table 4.6 that the large clusters were estimated reasonably accurately.  The 

best case cluster labeling algorithm described in chapter 2 is applied.  The kappa statistic is 

0.792, the weighted kappa statistic is 0.939, the Rand index is 0.977, and the adjusted Rand 

index is 0.864.  All of these statistics (discussed in Chapter 2) indicate good agreement 

between the mixture model clustering and the true simulated clusters.  Some of the small 

clusters were incorrectly estimated.  Increasing the sample size should improve estimation 

since the algorithms used are based on asymptotic theory.  In practice, we suggest removing 

the observations contained in large clusters and re-clustering the remaining observations.  The 

idea behind this recommendation is that large clusters are likely to contain a high amount of 
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noise which makes it hard to extract possible signals of interest.  The mean estimation is 

generally more accurate than the variance estimation.  This is due to the difficulty in discerning 

where the tails of the normal component distributions lie in the mixture distribution. 

 
The parameters for the second 15 component normal mixture distribution simulation 

are given in Table 4.7.  The proportions are equal, the means are generated the same way as in 

the first simulation, and the variances are generated according to the formula 

2 2 2
11 1,  where 15.k kσ σ σ−= − =  

 
Table 4.7: Parameters for 15 Component Normal Mixture Model with Equal Proportions, 

Different Means, and Different Variances 
Cluster Number Proportion Mean Variance

1 0.067 150.000 15.000
2 0.067 140.000 14.000
3 0.067 130.000 13.000
4 0.067 120.000 12.000
5 0.067 110.000 11.000
6 0.067 100.000 10.000
7 0.067 90.000 9.000
8 0.067 80.000 8.000
9 0.067 70.000 7.000
10 0.067 60.000 6.000
11 0.067 50.000 5.000
12 0.067 40.000 4.000
13 0.067 30.000 3.000
14 0.067 20.000 2.000
15 0.067 10.000 1.000

  

The normal mixture density for the second simulation is shown in Figure 4.10.  The 

density is complex and it is difficult to see more than a handful of modes (there should be 15 

total modes). 
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Figure 4.10: 15 Component Normal Mixture Density Plot for Second Simulation 
 

There were 1,000 observations simulated.  A 15 component one dimensional mixture 

distribution was fitted.  The starting values were generated from a k-means cluster analysis.  

These starting values are shown in Table 4.8. 

 
Table 4.8: Starting Values for Second Simulation of 15 Component Normal Mixture 

Model  
Cluster Number Proportion Mean Variance

1 0.067 10.075 2.334
2 0.109 24.414 25.000
3 0.078 40.163 7.198
4 0.072 50.158 4.077
5 0.069 140.790 8.761
6 0.075 128.949 8.916
7 0.052 60.219 4.771
8 0.055 119.320 7.228
9 0.062 69.886 3.620
10 0.070 109.645 4.941
11 0.046 82.174 3.284
12 0.031 76.867 2.968
13 0.075 100.713 5.189
14 0.065 151.983 12.043
15 0.074 90.986 6.001
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The model converged in 42 seconds and required 1,455 EM algorithm iterations.  The 

log likelihood for the model was -4904.65, the AIC was 9897.30, and the BIC was 10113.24.  

The parameter estimates are reported in Table 4.9. 

 
Table 4.9: Fit Results for Second Simulation of 15 Component Normal Mixture Model 

Actual Parameters Estimated Parameters 
Proportion Mean Variance Proportion Mean Variance 

0.067 150.000 15.000 0.066 151.624 15.249 
0.067 140.000 14.000 0.069 140.703 12.819 
0.067 130.000 13.000 0.029 130.621 3.883 
0.067 120.000 12.000 0.105 122.561 34.741 
0.067 110.000 11.000 0.068 109.403 7.397 
0.067 100.000 10.000 0.070 100.658 5.464 
0.067 90.000 9.000 0.082 90.720 9.381 
0.067 80.000 8.000 0.010 82.409 0.053 
0.067 70.000 7.000 0.057 79.386 7.676 
0.067 60.000 6.000 0.066 70.087 5.241 
0.067 50.000 5.000 0.050 60.195 4.508 
0.067 40.000 4.000 0.074 50.076 4.922 
0.067 30.000 3.000 0.065 40.808 2.715 
0.067 20.000 2.000 0.125 25.090 38.936 
0.067 10.000 1.000 0.063 9.863 0.968 

 

Notice in Table 4.9 that many cluster parameters were estimated accurately.  The best 

case cluster labeling algorithm described in chapter 2 is applied.  The kappa statistic is 0.484, 

the weighted kappa statistic is 0.829, the Rand index is 0.968, and the adjusted Rand index is 

0.757.  All of these statistics (discussed in Chapter 2) indicate good agreement between the 

mixture model clustering and the true simulated clusters.  The agreement is slightly worse than 

that for the first simulated 15 component normal mixture model.  Some of the observations 

were inappropriately combined.  When the mixture distribution is such that the number of 

observations in each cluster is large, estimation should improve since the algorithms used are 

based on asymptotic theory.  Thus, increasing the sample size may improve the estimation.  
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Mixture models may not be appropriate for applications with small numbers of observations, 

as the estimation could deteriorate.  The mean estimation is generally more accurate than the 

variance estimation.  This is due to the difficulty in discerning where the tails of the normal 

component distributions lie in the mixture distribution. 

 
The parameters for the third 15 component normal mixture distribution simulation are 

given in Table 4.10.  The proportions are equal, the means are generated the same way as in 

the first and second simulations, and the variances are equal. 

 
Table 4.10: Parameters for 15 Component Normal Mixture Model with Equal Proportions, 

Different Means, and Equal Variances 
Cluster Number Proportion Mean Variance

1 0.067 150.000 5.000 
2 0.067 140.000 5.000 
3 0.067 130.000 5.000 
4 0.067 120.000 5.000 
5 0.067 110.000 5.000 
6 0.067 100.000 5.000 
7 0.067 90.000 5.000 
8 0.067 80.000 5.000 
9 0.067 70.000 5.000 
10 0.067 60.000 5.000 
11 0.067 50.000 5.000 
12 0.067 40.000 5.000 
13 0.067 30.000 5.000 
14 0.067 20.000 5.000 
15 0.067 10.000 5.000 

 

The normal mixture density for the second simulation is shown in Figure 4.11.  The 

density is complex and it is difficult to see more than a handful of modes (there should be 15 

total modes). 
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Figure 4.11: 15 Component Normal Mixture Density Plot for Third Simulation 

 
 Figure 4.11 looks virtually identical to Figure 4.10 because only the simulation 

variances have changed for the third simulation.  There were 1,000 observations simulated.  A 

15 component one dimensional mixture distribution was fitted.  The starting values were 

generated from a k-means cluster analysis.  These starting values are shown in Table 4.11. 

 
Table 4.11: Starting Values for Third Simulation of 15 Component Normal Mixture Model  

Cluster Number Proportion Mean Variance
1 0.071 10.243 7.813
2 0.093 23.791 19.959
3 0.086 38.90 13.097
4 0.072 49.662 4.382
5 0.091 132.30 18.443
6 0.061 120.62 5.039
7 0.020 57.072 2.873
8 0.036 61.349 1.873
9 0.063 69.953 2.697
10 0.079 109.842 4.593
11 0.074 100.250 3.283
12 0.072 90.542 3.234
13 0.026 76.909 3.033
14 0.407 147.783 22.101
15 0.049 81.587 2.556
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The model converged in 20 seconds and required 68 EM algorithm iterations.  The log 

likelihood for the model was -4828.25, the AIC was 9716.50, and the BIC was 9863.73.  A 

common variance for all of the clusters was estimated.  This should be done only if the 

researcher has no reason to suspect that the variances for the groups are different.  The 

parameter estimates are reported in Table 4.12. 

 
Table 4.12: Fit Results for Third Simulation of 15 Component Normal Mixture Model 

Actual Parameters Estimated Parameters 
Proportion Mean Variance Proportion Mean Variance 

0.067 150.000 5.000 0.073 150.630 4.510 
0.067 140.000 5.000 0.061 140.126 4.510 
0.067 130.000 5.000 0.067 129.589 4.510 
0.067 120.000 5.000 0.059 120.361 4.510 
0.067 110.000 5.000 0.078 109.825 4.510 
0.067 100.000 5.000 0.074 100.308 4.510 
0.067 90.000 5.000 0.073 90.450 4.510 
0.067 80.000 5.000 0.068 80.316 4.510 
0.067 70.000 5.000 0.069 70.248 4.510 
0.067 60.000 5.000 0.052 60.205 4.510 
0.067 50.000 5.000 0.072 50.115 4.510 
0.067 40.000 5.000 0.071 40.754 4.510 
0.067 30.000 5.000 0.051 30.516 4.510 
0.067 20.000 5.000 0.064 20.380 4.510 
0.067 10.000 5.000 0.066 9.821 4.510 

 

The results in Table 4.12 are very accurate.  This is due in part to estimating a common 

variance.  Only 2C  parameters need to be estimated, as opposed to the usual 3 1C − .  For this 

case, if the variances are estimated separately, the parameter estimates are not as accurate, nor 

is the BIC as small.  The best case cluster labeling algorithm described in chapter 2 is applied.  

The kappa statistic is 0.971, the weighted kappa statistic is 0.994, the Rand index is 0.993, and 

the adjusted Rand index is 0.943.  All of these statistics (discussed in Chapter 2) indicate very 

good agreement between the mixture model clustering and the true simulated clusters.   
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 The usual approach to simulation is to generate a number of data sets, perform 

estimation separately for each one, and to report the aggregate parameter estimates along with 

their standard errors.  Such an approach takes the randomness of simulated data into account 

and may give a more accurate representation of how well the algorithm is reproducing the 

simulated parameters.  However, as discussed in Chapter 3, there is no inherent labeling for the 

clusters.  Thus, there is no way to accurately match the clusters from the different simulations 

in order to report aggregate parameter estimates.  This limitation is common to all clustering 

techniques. 

 However, the means (Equation 4.6) and variances (Equation 4.10) of Y for the mixture 

distribution are comparable for multiple runs of simulated data.  We simulated 100 sets of 

1,000 observations for each of the three cases discussed above.  The same seed values were 

used throughout. 

 For data simulated using the parameter values reported in Table 4.4, Figure 4.12 shows 

a scatter plot of the observed means of Y.   

 
 

 
 

 
 
 
 
 
 

 
 
 
 

Figure 4.12: Scatter Plot of the Means of Y for Simulation 1 with 100 Runs 
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 The actual mean was 96 and is indicated by the horizontal line in Figure 4.12.  The 

mean of the 100 simulations was 96.30 with a standard error of 1.48.  Figure 4.13 shows a 

scatter plot of the variances for Y. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 4.13: Scatter Plot of Variances of Y for Simulation 1 with 100 Runs 
 
 

The actual variance was 2190.75 and is indicated by the horizontal line in Figure 

4.13.  The variance for the 100 simulations was 2184.28 with a standard error of 61.75.  The 

simulated data appears to be representative of the artificially constructed population. 

For data simulated using the parameter values reported in Table 4.7, Figure 4.14 shows 

a scatter plot of the observed means of Y.  The actual mean was 80 and is indicated by the 

horizontal line in Figure 4.14.  The mean of the 100 simulations was 80.28 with a standard 

error of 1.36.  Figure 4.15 shows a scatter plot of the variances for Y. 
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Figure 4.14: Scatter Plot of the Means of Y for Simulation 2 with 100 Runs 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.15: Scatter Plot of Variances of Y for Simulation 2 with 100 Runs 
 
 

The actual variance was 1874.67 and is indicated by the horizontal line in Figure 

4.15.  The variance for the 100 simulations was 1873.43 with a standard error of 55.30.  The 

simulated data appears to be representative of the artificially constructed population. 

For data simulated using the parameter values reported in Table 4.10, Figure 4.16 

shows a scatter plot of the observed means of Y. 
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Figure 4.16: Scatter Plot of the Means of Y for Simulation 3 with 100 Runs 
 
 

The actual mean was 80 and is indicated by the horizontal line in Figure 4.16.  The 

mean of the 100 simulations was 80.28 with a standard error of 1.35.  Figure 4.16 is very 

similar to Figure 4.14 because the only simulation parameters that changed were the 

variances.  Figure 4.17 shows a scatter plot of the variances for Y. 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 4.17: Scatter Plot of Variances of Y for Simulation 3 with 100 Runs 
 

The actual variance was 1871.67 and is indicated by the horizontal line in Figure 

4.17.  The variance for the 100 simulations was 1870.36 with a standard error of 55.30.  The 

simulated data appears to be representative of the artificially constructed population. 
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 The model fit criteria described in Section 4.3.5 were applied to the first simulated 15 

component normal mixture model described above.  Table 4.4 gives the simulation parameter 

values.  Assuming that the number of clusters is unknown, models ranging from 10 clusters to 

20 clusters were fitted.  The log likelihood, AIC, and BIC values are given in Table 4.13. 

 
Table 4.13: Fit Statistics for Normal Mixture Models with Different Cluster Sizes 

Number of Clusters Log Likelihood AIC BIC 
10 -4863.53 9785.06 9927.38 
11 -4844.06 9752.11 9909.16 
12 -4831.63 9733.25 9905.02 
13 -4798.77 9673.53 9872.03 
14 -4808.58 9699.15 9900.37 
15 -4782.91 9653.83 9869.77 
16 -4781.74 9657.49 9888.15 
17 -4783.03 9666.06 9911.44 
18 -4804.13 9714.27 9974.38 
19 -4761.42 9634.84 9909.68 
20 -4772.66 9663.33 9952.89 

  

The bolded values in Table 4.13 indicate the models chosen according to each criterion.  

Notice that the BIC is the only criterion that selected the model with the correct number of 

clusters.  As discussed in Section 4.3.5, the BIC is the recommended statistic for evaluating 

model fit.  Figure 4.18 is a graphical representation of Table 4.13. 
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Figure 4.18: Plot of the -2 Log Likelihood, AIC, and BIC Values for 15 Component 

Normal Mixture 



148 

 

Visual inspection of Figure 4.18 confirms that the minimal BIC value occurs for the 15 

cluster model, while the minimum -2 log likelihood and AIC values occur for the 19 cluster 

model (these values are circled in Figure 4.18).  According to the BIC criterion, the 13 cluster 

model is also a potential candidate when choosing a final model since its BIC value is close to 

the value for the 15 cluster model. 

 
4.3.8 Analysis of Ross et al. (2000) Data Set 

Clustering Cell Lines 

 The Ross et al. (2000) data is described in Section 4.2.  Complete information 

is available on 6,165 genes and 60 cell lines.  Since the cell lines should group into 9 tumor 

types (Table 4.1), clustering is initially performed across the cell lines in order to compare the 

clustering results to the actual known tumor types.  The clusters are compared using methods 

discussed in Chapter 3. 

As discussed in Chapter 1, two dimensional data must be collapsed in order to cluster 

across one dimension.  For this analysis, the data were collapsed by taking the mean of the 

6,165 gene expression values for each of the 60 cell lines.  This process ignores the variability 

of the observations across genes and fails to use the knowledge that all of the observations for 

a single cell line come from the same distribution.  This problem can be setup as a repeated 

measures normal mixture problem.  Fitting such a model requires extending the likelihood 

(Equation 4.12).  The repeated measures problem is more completely defined in Section 6.2 

and is left for future study.  The density plot is given in Figure 4.19.  One can readily see that 

there are at least three or four modes present in the data. 
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Figure 4.19: Density Plot for Cell Lines in Ross Data 
 
 

In order to evaluate the normal mixture model for clustering, no assumptions were 

made regarding the number of clusters that are present.  Normal mixture models with different 

numbers of clusters were fitted.  The starting values were generated using a k-means cluster 

analysis.  The fit statistics for these models are reported in Table 4.14. 

 
Table 4.14: Fit Statistics for Clustering Across Cell Lines in Ross Data Set 

Number of Clusters Log Likelihood AIC BIC 
2 163.70 -317.40 -306.93 
3 164.09 -312.18 -295.43 
4 170.09 -318.17 -295.14 
5 171.30 -314.60 -285.28 
6 173.42 -312.84 -277.23 
7 172.45 -304.89 -263.00 
8 175.77 -305.54 -257.37 
9 179.59 -307.19 -252.73 
10 186.55 -315.11 -254.37 

 
 
 Models having more than 10 clusters did not converge.  This is likely due to the small 

sample size of 60.  The estimation formulas are asymptotic and may not be working properly 

for this small sample. 
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 Figure 4.20 is a graphical representation of Table 4.14.  The bolded values in Table 

4.14 and the circled values in Figure 4.20 indicate the optimal values for each of the three 

model fit statistics.  For negative AIC and BIC values, the values closest to zero are chosen as 

representing the best fitting models.  For the -2 log likelihood value, the smallest value is 

chosen.  Once again, only the BIC fit statistic resulted in choosing the “right” 9 cluster model. 
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Figure 4.20: Plot of the -2 Log Likelihood, AIC, and BIC Values for Clustering Across 

Cell Lines Using the Ross Data 
 

 The 9 cluster model is chosen as the best fitting model.  This model converged in 127 

EM algorithm iterations in 36 seconds.  The log likelihood value for this model was 179.59, 

the AIC was -307.19, and the BIC was -252.73.  The parameter estimates are reported in Table 

4.15. 
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Table 4.15: Parameter Estimates for Clustering Ross Data Across Cell Lines 
Parameter Estimates Number in Cluster

Proportion Mean Variance 
12 0.195 0.006 0.0000013 
6 0.101 -0.036 0.0000049 
4 0.067 0.020 0.0000014 
3 0.049 -0.029 0.0000007 
2 0.033 0.028 0.0000007 
14 0.232 -0.006 0.0000046 
11 0.185 -0.016 0.0000142 
4 0.071 0.002 0.0000019 
4 0.067 0.014 0.0000016 

 

Since the actual tumor types are known for the 60 cell lines, the cluster results can be 

verified using the methods described in Chapter 3.  The “best case” cluster labeling algorithm 

is used using the results from the 9 cluster model.  The kappa statistic is 0.188, the weighted 

kappa statistic is 0.111, the Rand index is 0.780, and the adjusted Rand index is 0.007.  These 

statistics indicate that the agreement between the normal mixture model clustering and the 

actual cell line clusters is quite poor.  This may be due to the asymptotics not working properly 

with a sample size of 60.  Collapsing the data by taking the mean of 6,165 genes for each cell 

line could be problematic.  It would be better to approach this analysis as a repeated measures 

problem.  The repeated measures problem is not covered in this dissertation and is 

recommended as a future research problem in Section 6.2. 

 
Clustering Genes Using Filtered Data 

 Proper filtering of microarray data is important in order to reduce the amount of noise 

present in the data.  Genes which have a mean expression level close to zero and expression 

levels with variances close to zero are not informative and should be removed from the 

analysis.  This method requires the selection of a threshold for the variances and the absolute 
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values of the means.  The absolute values of the means are used because the goal is to find 

genes with means closest to zero, regardless of whether they are positive or negative.  The 

means and variances are calculated across the 60 cell lines for each gene.  If the variances and 

the absolute values of the means for a gene are both below these thresholds, the gene is 

removed.  The thresholds may be adjusted in order to change the stringency of the filter to suit 

the application.  This filtering method was applied in this chapter, and other methods of 

filtering are discussed in Chapter 2. 

 The initial step in selecting thresholds is to plot the means and variances for all of the 

genes.  These plots are given in Figures 4.21 and 4.22, respectively. 
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Figure 4.21: Mean Across Cell Lines for Ross Data 

 
 
 There appear to be several distinct groups of genes based on the mean gene 

expression levels shown in Figure 4.21.  Some genes have means that could be considered 

outliers.  Ideally, these observations should be examined in the lab to see if they are 

plausible.  We have no reason to remove them here, as they might represent genes that are 

strongly active across all of the cell lines. 
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Figure 4.22: Variance Across Cell Lines for Ross Data 

 
 
The gene expression variances shown in Figure 4.22 show a reasonable scatter.  

However, it is interesting that the variances for genes in the middle are lower than those for the 

genes on either end.  This could be evidence of something systematic occurring.  However, 

none of the variances have outrageous values and thus we proceed carefully. 

The goal for this analysis is to find genes that simultaneously have small variances and 

small absolute values for the means.  The plots in Figures 4.23 and 4.24 are helpful in selecting 

thresholds for such cases. 
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Figure 4.23: Absolute Gene Mean x Gene Variance Plot for Ross Data 
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Figure 4.24: Gene Variance x  Absolute Gene Mean Plot for Ross Data 

  

It is desirable to eliminate a significant fraction of the noisy genes from further 

analysis.  A large group of observations appear to have small variances and absolute means.  

By a somewhat arbitrary process, thresholds of 0.2 were chosen for both the absolute means 

and variances.  Genes with absolute means and variances falling simultaneously below this 

value were  filtered out.  This resulted in 3,454 genes kept out of 6,165.  This is a 44 percent 

reduction in the number of genes for the analysis. 

 The density for the 3,454 gene means is shown in Figure 4.25. 
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Figure 4.25: Density Plot for Ross Data 
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 The density shown in Figure 4.19 has a long tail on the left side.  This tail could make 

estimation more difficult.  There are a few “bumps” in the curve which may represent 

clusters.  One expects a rather large number of gene clusters to be present due to the large 

number of potential gene pathways.  Normal mixture models were fit using various numbers 

of clusters.  For each gene, the 60 cell lines were summarized using the mean.  The model fit 

statistics are given in Table 4.16. 

 
Table 4.16: Fit Statistics for Normal Mixture Model Applied to Genes for Ross Data 

Number of Clusters Log Likelihood AIC BIC 
10 4057.50 -8057.01 -7878.74 
11 4059.76 -8055.52 -7858.81 
12 4082.22 -8094.43 -7879.28 
13 4066.82 -8057.64 -7824.04 
14 4098.38 -8114.76 -7862.72 
15 4099.23 -8110.47 -7839.99 
16 4105.86 -8117.72 -7828.79 
17 4106.21 -8112.43 -7805.07 
18 4105.82 -8105.64 -7779.83 
19 4120.52 -8129.04 -7784.79 
20 4109.70 -8101.40 -7738.71 
21 4115.67 -8107.34 -7726.21 
22 4124.41 -8118.82 -7719.25 
23 4113.44 -8090.88 -7672.86 
24 4118.66 -8095.33 -7658.87 
25 4124.75 -8101.50 -7646.60 
26 4126.26 -8098.52 -7625.18 
27 4134.47 -8108.94 -7617.16 
28 4142.69 -8119.38 -7609.16 
29 4142.83 -8113.66 -7584.00 
30 4148.36 -8118.72 -7571.61 
35 4156.32 -8104.65 -7465.33 
40 4181.51 -8125.02 -7393.50 
45 Failed to converge 
50 4206.14 -8114.28 -7198.33 

 

 Figure 4.26 is a graphical representation of Table 4.16.   
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Figure 4.26: Plot of the -2 Log Likelihood, AIC, and BIC Values for Ross Data 

 
 
 The circled values in Figure 4.26 indicate the models selected by the three fit criteria.  

Since the BIC values appear to have an upward trend as the number of clusters increases, there 

are probably more clusters than the 50 present in the  “best fitting” model.  The idea that there 

are many clusters present for the genes is biologically sound, since genes may be involved in 

multiple pathways and there are many pathways.  Due to space constraints, the 50 cluster 

model parameter estimates and cluster assignments are not given.  In practice, one would 

continue fitting larger mixture models until satisfied that the BIC value no longer increases.  

This model would then be selected as the best fitting model. 

 
Clustering a Subset of Genes Having Known Function 

 We compiled a gene list containing 429 genes known to be involved in specific genetic 

pathways.  There are at least 21 pathways represented by these 429 genes.  The means for the 

429 genes are shown in the density plot in Figure 4.27. 
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Figure 4.27: Density Plot for Ross Data 
 
The mixture distribution looks complicated as shown in Figure 4.27.  The distribution 

has a long left tail.  There are several “bumps” present which may represent clusters.  Normal 

mixture models of various cluster sizes were fitted.  The fit statistics for these models are 

shown in Table 4.17. 

Table 4.17: Fit Statistics for Normal Mixture Model Applied to Genes of Known Function 
for Ross Data 

Number of Clusters Log Likelihood AIC BIC 
10 559.52 -1061.05 -943.27 
11 562.79 -1061.59 -931.62 
12 566.20 -1062.41 -920.26 
13 569.63 -1063.27 -908.93 
14 568.93 -1055.85 -889.33 
15 571.15 -1054.29 -875.59 
16 580.84 -1067.69 -876.80 
17 573.60 -1047.21 -844.14 
18 579.68 -1053.36 -838.10 
19 551.26 -1026.51 -872.18 
20 581.94 -1045.87 -806.25 
21 537.66 -991.32 -820.74 
22 537.66 -987.32 -808.61 
23 551.26 -1010.51 -823.69 
24 591.16 -1040.33 -751.97 
25 599.31 -1050.62 -750.07 
26 605.89 -1057.79 -745.06 
27 551.26 -994.51 -775.20 
28 551.26 -990.51 -763.07 
29 551.70 -987.40 -751.83 
30 551.70 -983.40 -749.71 
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The fit statistics given in Table 4.17 are plotted in Figure 4.28.  The circles indicate the 

models selected by the three fit statistics.  The bolded values in Table 4.17 indicate the models 

selected, while the italicized numbers indicate models that did not converge unless the cluster 

variances were forced to be equal.  Notice that both the likelihood and the BIC suggest that the 

26 cluster model fits best.   
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Figure 4.28: Plot of the -2 Log Likelihood, AIC, and BIC Values for Ross Data for 

Selected Genes 
 

 
 The 26 clusters were manually examined to see if any of the 429 genes clustered into 

the 21 known pathways.  No clusters were found for which this was the case.  These pathways 

would perhaps cluster better if the repeated measures mixture model discussed in Chapter 6 

were applied.  Collapsing the cell line observations for each gene using the mean may have 

removed much of the information that could have helped in grouping genes according to the 

pathways.  The genes in a given pathway may not always cluster together under the best of 

circumstances.   



159 

 

4.4 Conclusion 

 The advantage of using parametric models, such as the normal mixture model, for 

clustering is that one can formally evaluate the model fit by using likelihood based statistics.  

Normal mixture models for clustering require the number of clusters to be specified.  Section 

4.3.5 introduces three criteria for evaluating the fit of a mixture model and suggests the BIC as 

the measure of choice.  Alternative methods for evaluating the model fit are described in 

McLachlan and Peel (2000).  Currently, multiple models having different numbers of clusters 

must be fit and the best fitting model selected using statistics such as the BIC.  In order to 

lessen this workload, more research is needed to determine a priori how many clusters are 

expected.  The gap statistic proposed by Tibshirani et al. (2000) is one such approach.  

However, the gap statistic requires multiple models to be fit before predicting the appropriate 

number of clusters.  Selecting the best number of clusters  is listed as a future research problem 

in Section 6.2.   

 In cases where large numbers of clusters are present, there are frequently a handful of 

very large clusters present.  This circumstance could negatively effect the accuracy of the 

estimation for the numerous remaining smaller clusters.   The large clusters often contain a 

high degree of noise.  One option for analyzing such data is to remove the observations which 

are members of large clusters and to re-cluster the remaining observations.  This technique 

may help in focusing on signals of interest which are often contained in small clusters. 

 When working with large numbers of observations, it is often helpful to filter the data 

in some way.  Chapter 2 describes filtering in more detail.  The filtering method applied in this 

chapter is a simple screening process based on means and variances both having to be below a 
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threshold in order to be excluded.  Filtering can speed up convergence time as well as result in 

more accurate parameter estimation. 

 The analyses of the two dimensional microarray data in this chapter required the data to 

be collapsed in one dimension and examined unidimensionally.  These analyses resulted in 

clusters of cell lines or clusters of genes.  However, some information may have been lost 

regarding the interrelationships between genes and cell lines.  It may be helpful to examine the 

data with a truly two dimensional method, which would allow genes and cell lines to be 

simultaneously clustered.  Such a method is developed in Chapter 5. 
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Chapter 5 
 

Two Dimensional Parametric Clustering 
 
 
5.1 Introduction 
 
5.1.1 Motivation Behind Two Dimensional Parametric Clustering 

Consider a data set that has 10 variables for 100 individuals.  The one dimensional 

parametric model presented in Chapter 4 allows the researcher to group similar variables or 

similar individuals together, but not both simultaneously.  The one dimensional model requires 

the data to be collapsed in some way across the dimension that is not grouped, since the data 

must be examined in one dimension at a time.  This data reduction may mask interesting 

relationships between the data in the reduced dimension and the data in the dimension grouped 

across.  Analyzing two dimensional data using one dimensional techniques requires the data to 

be first grouped in one dimension.  The second dimension of the data can be scrutinized in a 

later subanalysis which regroups the initial groups in the other dimension.  Such an approach is 

not optimal because of the potential loss of information due to clustering in stages.  

Suppose that the researcher’s question regards the interrelationships between the 

variables and the individuals.  Such a question could be approached by extending the model 

developed in Chapter 4 to allow a two dimensional grouping of variables and individuals.  

Figure 5.1 gives an example of such two dimensional groupings. 
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Figure 5.1: Two Dimensional Groups of Individuals and Variables 

 
The boxes in the grid represent two dimensional groups labeled for easy identification.  

Groups 1, 2, and 3 demonstrate that the groups can take on different shapes.  Group 1 is a 

group containing a few variables and many individuals.  Group 2 is a disjoint group.  Group 3 

is a group containing a few individuals and many variables.  The two dimensional model 

allows both disjoint groups and groups of varying shapes.  Identifying which group a data 

point lies in requires two coordinates to be specified – the individual number and the variable 

number.  This two dimensional relationship makes maximal use of the data.  One dimensional 

techniques do not allow for this robust interpretation, since the data must be collapsed. 

Two dimensional data are present in a variety of problems.  Data are two dimensional 

when they can be represented in a grid with categorical labels across both axes.  Some 

microarray data have a natural two dimensional format.  One example is when the horizontal 

dimension represents C cell lines and the vertical dimension represents G genes.  The 

observations are the gene expression values measured in fluorescence units.  A model may be 

developed that allows the simultaneous grouping of cell lines and genes.  Such a result may 

offer researchers new insight into groups of genes that are active in a set of cell types.  It 
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should be noted that this differs from a bivariate clustering where one may have data on two 

variables which are clustered simultaneously. 

A popular approach for visualizing cluster results is a color map such as the one shown 

in Figure 5.2. 

 
Figure 5.2: Example Color Map 

 

The y axis of the color map represents one dimension of the data (genes), while the x axis 

represents the second dimension of the data (cell lines).  A popular software package for 

constructing such color maps was written by Michael Eisen (1998).  Although this color map 

looks two dimensional, it is actually the result of two one dimensional cluster analyses.  A 

hierarchical clustering method is first applied to one dimension of the data.  The dendrogram is 

positioned on the axis and the observations are shaded according to what clusters they fall in.  

The second dimension of the data is then clustered and the rows (or columns) are reordered 

such that observations falling in similarly sized clusters in both dimensions appear together.  

The second dendrogram is added to the plot.  Such a representation of the data is helpful in 
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visualizing cluster results.  However, the analyses applied are not two dimensional, although 

they are often misinterpreted as such. 

 
5.1.2 Chapter Contents 

This chapter focuses on the development of two dimensional parametric clustering 

algorithms which cluster based on both dimensions of the data simultaneously.  The motivation 

behind the development of two dimensional clustering models is discussed.   Two dimensional 

data are described.  The mixture model theory for the two dimensional case is introduced.  The 

two dimensional normal mixture model is formulated.  The Expectation/Maximization (EM) 

algorithm is outlined as an iterative likelihood technique that is useful for obtaining parameter 

estimates for the two dimensional mixture model.  The appropriate extensions of the theory for 

implementing the EM algorithm are developed.  The hybrid algorithm suggested for the one 

dimensional case (Hasselblad, 1966) is extended for the two dimensional mixture model case.  

Confidence interval formulas are derived for the estimates of the parameters and the posterior 

probabilities of a given observation belonging to a specific cluster.  A software package, 2-

DCluster, that implements these methods and calculates the appropriate confidence intervals is 

provided (see the 2-DCluster Appendix for the software documentation and availability).  Data 

are simulated and analyzed.  Experimental data from the Ross et al. (2000) microarray 

experiment are analyzed, followed by a discussion of the results.   
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5.2 The Two Dimensional Normal Mixture Model 

5.2.1 Introduction to the Model 

 For performing two dimensional clustering, we suggest a model which directly extends 

the one dimensional normal mixture model discussed in Chapter 4.  The two dimensional 

normal mixture model proposed could be written as: 

 

 ( )
*

2
kl

1 1
;  , ,ij

C C
y kl ij kl

k l
f yπ φ τ σ

= =
= ∑ ∑  (5.1) 

 
2 2 2where .kl k lτσ σ σ= +   For the two dimensional normal mixture model, the observations, ijy , 

are associated with a row, indexed by i, and a column, indexed by j.  This is illustrated in Table 

5.1. 

Table 5.1: Two Dimensional Normal Mixture Data 
 j index 

i i
nd

ex
  

ijy  (Data) 

 

A single observation is represented by a pair of indices.  The mixture model (introduced in 

Chapter 4) is formulated in terms of the random variable ijy .  One way to motivate the 

distribution given in Equation 5.1 is through a mixture of mixtures.  Suppose, as in the one 

dimensional case, that the ijy  are distributed as mixtures of  normal distributions 

( )2;  ,ij kj kyφ µ σ , where 1, ,i N= …  represents the N rows of data, *1, ,j N= …  represents the 

*N  columns of data, and 1, ,k C= …  represents the C groupings of the rows of data.  Notice 



166 

 

that the mean of the distribution of the thk  cluster, kjµ , changes across the columns.  (If the 

columns were treated as replicates this would reduce to the unidimensional case.)  To 

accommodate clusters across the columns (j’s), the kjµ ’s themselves are assumed to be 

distributed as mixtures of normal distributions ( )2;  ,kj kl klφ µ τ σ , where i, j, and k are defined 

as before and *1, ,l C= …  represents the *C groupings of the columns of the data.  The normal 

mixture distribution of the ijY  conditional on the fixed kjµ  is given by: 

 

 ( )2
|

1 1
;  , .ij kj

C C
k x k ij kj k

k k
f f yµπ π φ µ σ

= =
= =∑ ∑  (5.2) 

 
The distributions of the kjµ ’s are assumed to be normal mixtures with the density: 
 
 

 ( )
* *

2

1 1
;  , ,kj

C C
l l kj kl l

l l
g fµ τψ ψ φ µ τ σ

= =
= =∑ ∑  (5.3) 

 
where lψ  represents the proportion of observations falling in the thl  column cluster.  Then the 

marginal distribution of ijy  is (see Appendix 5.1 for derivation details): 
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 (5.4) 

 
These types of marginal distributions are also called mixtures (McLachlan and Basford, 1988).   

In this formulation, the one dimensional cluster specific parameters 2
kσ  and 2

lτσ  are 

not identifiable and only their sum, 2 2
k lτσ σ+ , is estimable.  This is acceptable since the real 

parameters of interest are the two dimensional cluster specific parameters klπ , klτ , and 2
klσ .  

Notice that this reduces to a one dimensional form as follows: 

 

 ( )
*

2
m

1
;  , ,ij

CC
y m ij m

m
f yπ φ τ σ=

=
∑  (5.5) 

 
where m klπ π= ,  2 2

m klσ σ= , and the sum is over *CC  clusters.  Such a simplification allows 

the formulas derived in Chapter 4 to be readily extended for the two dimensional case.  When 

collapsed to vector notation, the two dimensional clustering framework preserves the two 

dimensional nature of the data and the clusters.  Thus the problem reduces to maintaining the 

appropriate indices of the clusters corresponding to each ijy .   

The expected value of ijy  is a weighted average,  
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The variance of  ijy  is: 

 

 ( )
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.
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The formulation of the two dimensional clustering framework (conditioning on rows or 

columns) is illustrated through the use of an example.  Figure 5.3 shows a 5 x 5 grid of 

observations which come from a 4 cluster model. 

 
 Columns 

  1C  2C  3C  4C  5C  

1R  11y  12y  13y  14y  15y  

2R 21y 22y 23y 24y 25y

3R 31y 32y 33y  34y 35y  

4R 41y 42y 43y 44y 45yRo
w

s 

5R 51y 52y 53y  54y 55y  
Figure 5.3: Four Component Normal Mixture Example with 25 Observations 

 
 

The different clusters shown in Figure 5.3 are described below.  First define the 

following sets based on the four colors. 

 
Red: { }1 2 1, |A R R C= , { }1 2 2, |B R R C= , { }2 3 4 4, , |C R R R C= , { }2 3 4 5, , |D R R R C=  
 
Green: { }3 1|E R C= , { }3 2|F R C= , { }1 2 3 3, , |G R R R C=  
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Pink: { }4 5 1, |H R R C= , { }4 5 2, |I R R C= , { }4 5 3, |J R R C=  
 
Blue: { }1 5 4, |K R R C= , { }1 5 5, |L R R C=  
 
 

The set defined by A B C D∪ ∪ ∪  is shown in Equation 5.8. 

  

 
{ } { } { } { }{ }
{ }

1 2 1 1 2 2 2 3 4 4 2 3 4 5

11 21 12 22 24 34 44 25 35 45

1 , | , , | , , , | , , , |

, , , , , , , , ,

CLUST R R C R R C R R y C R R y C

y y y y y y y y y y

=

=
 (5.8) 

 
 All of the observations contained in CLUST1 are members of the first cluster shown in red in 

Figure 5.3 and come from the normal distribution ( )2
11 11;  ,ijyφ τ σ .  Since 10 out of 25 

observations belong to cluster one, 11 10 / 25 0.40π = = . 

The set defined by E F G∪ ∪  is shown in Equation 5.9. 

 

 
{ } { } { }{ }
{ }

3 1 3 2 1 2 3 3

31 32 13 23 33

2 | , | , , , |

, , , ,

CLUST R C R C R R R C

y y y y y

=

=
 (5.9) 

 
All of the observations contained in CLUST2 are members of the second cluster shown in 

green in Figure 5.3 and come from the normal distribution ( )2
12 12;  ,ijyφ τ σ .  Since 5 out of 25 

observations belong to cluster two, 12 5 / 25 0.20π = = . 

The set defined by H I J∪ ∪  is shown in Equation 5.10. 

 

 
{ } { } { }{ }
{ }

4 5 1 4 5 2 4 5 3

41 51 42 52 43 53

3 , | , , | , , |

, , , , ,

CLUST R R C R R C R R C

y y y y y y

=

=
 (5.10) 
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All of the observations contained in CLUST3 are members of the third cluster shown in pink in 

Figure 5.3 and come from the normal distribution ( )2
21 21;  ,ijyφ τ σ .  Since 6 out of 25 

observations belong to cluster three, 21 6 / 25 0.24π = = . 

The set defined by K L∪  is shown in Equation 5.11. 

 

 
{ } { }{ }
{ }

1 5 4 1 5 5

24 34 44 25 35 45

4 , | , , |

, , , , ,

CLUST R R C R R C

y y y y y y

=

=
 (5.11) 

 
All of the observations contained in CLUST4 are members of the fourth cluster shown in blue 

in Figure 5.3 and come from the normal distribution ( )2
22 22;  ,ijyφ τ σ .  Since 4 out of 25 

observations belong to cluster four, 22 4 / 25 0.16π = = . 

The mixture distribution is formed from all of the observations.  Each distribution is 

weighted by the proportion of observations that come from that distribution.  The mixture 

distribution for this 4 component normal mixture is: 

 

 
( ) ( ) ( )
( )

2 2 2
11 11 12 12 21 21

2
22 22

0.40 ;  , 0.20 ;  , 0.24 ;  ,

0.16 ;  ,

ijy ij ij ij

ij

f y y y

y

φ τ σ φ τ σ φ τ σ

φ τ σ

= + + +
 (5.12) 

 
The likelihood is: 
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5.2.2 Parameter Estimation for Two Dimensional Normal Mixture Models 

Suppose that a random sample of T  observations is obtained from the two dimensional 

normal mixture described in Section 5.2.1, where N  is the number of rows of the data, *N  is 

the number of columns of the data, and *T N N= i .  The likelihood for the T  observations is 

given by the joint density of the sample: 

 

 ( ) ( )
* *

2
kl

1 11 1
;  ,  ,  ;  , ,

N N C C
kl ij kl

k li j
L yπ φ τ σ

= == =
= ∑ ∑∏∏2y π τ σ  (5.14) 

 
where y  is an * x N N  dimensional data matrix, π  is a * 1CC −  dimensional matrix of 

proportions, and  and 2τ σ  are *CC  dimensional vectors of means and variances, respectively.  

To obtain the maximum likelihood estimates (MLE’s), the log likelihood, 
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* *

2
kl

1 1 1 1
;  ,  ,  log ;  ,  ,  log ;  ,

N N C C
kl ij kl

i j k l
L yπ φ τ σ
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 
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∑ ∑ ∑∑2 2y π τ σ y π τ σA (5.15) 

 
is maximized with respect to the parameters klπ , klτ , and 2

klσ .  The MLE’s are found by 

taking the first derivatives of the log likelihood with respect to the parameters of interest, 

setting them equal to zero, and solving. 

 Prior to solving the maximum likelihood equations, it is necessary to place a restriction 

on the proportions in order to insure that they sum to one.  Two possible restrictions are the 
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marginal and the global restrictions.  These two restrictions lead to different expected values of  

Y, as shown below. 

First, consider the mixture of mixtures case as defined in Equation 5.1.  In this case, 

both kπ  and lψ  must sum to 1, which in terms of klπ  leads to kl k lπ π ψ=  and 

1

1
1

C
Cl kl

k
π π

−

=
= − ∑  and 

*

*
1

1
1

C
klkC

l
π π

−

=
= − ∑ .  These restrictions force the marginals to conform 

to .
1

1
C

k
k

π
=

=∑  and 
*

.
1

1
C

l
l

π
=

=∑ .  The expected value of Y is calculated under these restrictions for 

the 2 x 2 normal mixture distribution.  The klπ ’s for the 2 x 2 case are shown in Table 5.2, 

where . .kl k lπ π π= . 

 
Table 5.2: Cluster Proportions for the 2 x 2 Case with Marginal Restrictions 

11π  12π  1.π  

21π 22π 2.π

.1π  .2π  1 
 

The expected value of Y for the 2 x 2 case is: 
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 (5.16) 
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Now consider the global restriction 
*

*

*
1 1

    

1
C C

klCC
k l
kl CC

π π
= =
≠

= − ∑ ∑ .  Table 5.3 shows the klπ ’s 

for the 2 x 2 case. 

 
Table 5.3: Cluster Proportions for the 2 x 2 Case with Global Restrictions 

11π  12π   

21π 22π  
  1

 

After applying the restriction, Table 5.3 may be rewritten as shown in Table 5.4. 

 
Table 5.4: Cluster Proportions for the 2 x 2 Case After Global Restriction Application 

11π  ( )11 21 221 π π π− + +

( )11 12 221 π π π− + + ( )11 12 211 π π π− + +  
 

The expected value of Y is recalculated under this restriction for the 2 x 2 case. 
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Notice that the expected values of Y in Equations 5.16 and 5.17 have different forms 

for the two sets of restrictions.  Placing restrictions on the marginals and requiring the rows 

and the columns to be independent ( kl k lπ π π= ) causes the two dimensional clusters to be 

related through the margins and does not allow the flexibility of the clusters being able to take 

on any shape.  This limitation is shown in Figure 5.4. 

 

1 2 3 

4 5 6 

7 8 9 

Figure 5.4: Two Dimensional Clusters with Marginal Restrictions 

 
Observe in Figure 5.4 that the row and the column widths are fixed.  This happens 

because the marginal restrictions fix the row or column widths for the clusters in one 

dimension and the two dimensional clusters must be formed from these fixed width component 

clusters.  The global restriction on the klπ ’s  does not force the clusters to lie in any particular 

position, as shown in Figure 5.5.   

This flexibility arises from each observation being able to be a member of any cluster.  

Information regarding the observation’s location in the data matrix is preserved by recording 

the row and column number from which it came from.  This is useful in the two dimensional 
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cluster application, so the global restriction 
*

*

*
1 1

    

1
C C

klCC
k l
kl CC

π π
= =
≠

= − ∑ ∑ is used in this dissertation.  

The derivatives are calculated under this constraint. 

 
5 

  1 
6 

2 

4 

8 6 

7 

8 1 8 6 9 3 

9 
Figure 5.5: Two Dimensional Clusters with Global Restriction 

 
Since the two dimensional clusters may take on any size or shape when the global 

constraint is applied, it is usually not possible to reorder the data so that observations belonging 

to the same cluster are adjacent to each other.  This is due to the complex geometry of the 

clusters.  Reordering the data may violate the cluster assignments generated by the algorithm.  

The inability to reorder the data eliminates the need to maintain two indices (k and l) for the 

clusters, as there is no way to separate the clusters that are due to the columns of the data from 

the clusters that are due to the rows of the data.  This allows the substitution of a single 

summation over the *CC  clusters instead of the double summations over C  and *C .  In other 

words, 
*

1

CC

kl=
∑  must be substituted for 

*

1 1

C C

k l= =
∑ ∑ in all of the formulas. 
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In some applications, the marginal constraints may be more appropriate.  For example, 

if the researcher has prior knowledge of how one dimension of the data clusters, this 

information could be incorporated using the marginal constraints.  Another application in 

which marginal constraints may be preferable is if an experimenter knows that the column and 

the row variables are independent.  Applying the marginal constraints requires maintaining 

separate indices for the row and the column clusters.  Thus, the double summation 

*

1 1

C C

k l= =
∑ ∑ must be included in all of the formulas for the marginal constraint case.  This is 

because the fixed row or column cluster sizes, under these constraints, allow the data to be 

reordered in such a way that the observations belonging to the same cluster are adjacent to 

each other.  As argued above, the global constraint seems more appropriate for microarray 

clustering applications, and thus is used in this dissertation. 

Hasselblad (1966) calculates the first derivatives for the one dimensional normal 

mixture model.  The derivatives for the two dimensional normal mixture model are shown 

below.  Let the number of rows of the data, N , be indexed by i  and the number of columns of 

the data, *N , be indexed by j.  Let C  and *C  represent the number of groupings of the rows 

and columns of the data, respectively.  Let ijy  be the ( ), thi j  observation, klπ  be the 

proportion of total observations contained in the ( ), thk l  cluster, and klτ  and 2
klσ  be the mean 

and variance, respectively, of the observations contained in the ( ), thk l  cluster.  The 

distribution of the ( ), thk l  two dimensional normal mixture component is represented as: 
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The two dimensional normal mixture distribution of the random variable Y is written as: 
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The first derivatives of the log likelihood are shown below. 
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 (5.20) 

 
These equations are nonlinear and therefore need to be solved iteratively.  Due to the 

convergence problems with the Newton Raphson (NR) algorithm (Heath, 1997), the 

Expectation/Maximization (EM) algorithm is suggested.  The EM and NR algorithms are 

introduced in Chapter 4. 

To develop the EM algorithm, the first requirement is the definition of the incomplete 

data (Dempster et al., 1977).  For the two dimensional mixture model, the incomplete data are 
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defined by the indicator variables that assign the observations to specific clusters.  These 

indicator variables may be written as: 

 

 1,  if the ( , )  observation  ( , )  cluster
0,  otherwise

th th
ijkl

i j k lI
 ∈= 


 (5.21) 

 
The distributions of these indicator variables are specified by the posterior probabilities, ijklα .  

In other words, ( )1|ijkl ij ijklP I y α= = .  In the Expectation stage of the EM algorithm, the 

complete data are obtained by estimating ijklα .  The value ijklα  represents the posterior 

probability of the ( ), thi j  observation falling in the ( ), thk l cluster.  The posterior probability is 

estimated by taking a weighted average of all *CC  of the posterior probabilities.  That is, 
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y y  (5.22) 

 
Notice that the number of unknowns in this step is *3 1CC − .  Thus, *3 1CC −  initial 

values need to be specified: * 1CC −  for the proportions, *CC  for the means, and *CC  for the 

variances.  After the initial iteration, new estimates for these values are obtained from the 

maximization step of the EM algorithm. 

The maximization step of the EM algorithm uses the completed data to estimate the 

parameters of the distribution.  Once the observations falling into the different groups are 
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identified, obtaining the *3 1CC −  estimates of the proportions, means, and variances is 

straightforward and explicit solutions exist. 

Equations 5.23 through 5.25 give the maximum likelihood estimates for the 

proportions, means, and variances for the normal mixture problem.  For details of these 

derivations, see Appendix 5.2.  The estimate for the proportion of observations falling in the 

( ), thk l  cluster, klπ , is: 

 l

l
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1 1
* .

N N
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 (5.23) 

 
The estimate for the mean of the ( ), thk l cluster, klτ , is: 
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The estimate for the variance of the ( ), thk l cluster, 2
klσ , is: 
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For the case of homogenous variances among the *CC clusters, the 2
klσ ’s are first 

estimated for all of the clusters.  Once these estimates are found, the new common variance, 

2σ , is estimated by: 
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 (5.26) 

 
Each iteration of the EM algorithm involves calculating equations 5.22 through 5.25 in 

that sequence.  For the first iteration, the starting values are used to calculate l ijklα .  At the end 

of each iteration, a check is made to see if the EM algorithm converged.  As described in 

Section 4.3.2, there are a number of ways that this check can be performed.  The approach 

taken by McLachlan and Peel (2000) is used in this dissertation.  A check for convergence is 

performed by examining all *CC  of the proportion ( klπ ) estimates and seeing if the change 

from the previous iteration’s estimate is less than some tolerance value.  If any one of the *CC  

estimates has changed by some amount greater than the tolerance value, the algorithm 

continues.  The justification for this stopping rule is that the proportions are the most important 

parameters to estimate accurately because they indicate the relative sizes of the clusters to the 

user and contain the l
*

1 1

N N
ijkl

i j
α

= =
∑∑  terms which are involved in both the mean and the variance 

estimates.     
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Cluster membership is assigned by calculating all *CC of the l ijklα ’s for each 

individual ijy  and assigning the individual to the cluster for which the posterior probability of 

belonging is greatest.  However, for values of l ijklα  that are very close to each other, assigning 

an individual to a cluster based on the maximum posterior probability may not be optimal.  All 

of the posterior probabilities are available from the  mixture model fit, and the user can 

evaluate the results of different cluster assignments.  Section 4.3.5 describes approaches for 

comparing models that have different numbers of clusters. 

 
5.2.3 The EM/Newton-Raphson Hybrid Algorithm 
 

The EM/Newton-Raphson hybrid algorithm takes advantage of the best features of the 

Expectation/Maximization (EM) and Newton-Raphson (NR) algorithms in order to decrease 

the convergence time and to obtain an accurate solution.  The implementation of the hybrid 

algorithm for the one dimensional normal mixture problem is described in Section 4.3.3.  

Implementing the algorithm for the two dimensional normal mixture problem requires 

extending the formulas to the two dimensional case.  Otherwise, the implementation steps are 

the same. 

Equations 5.1 – 5.26 extend the one dimensional normal mixture formulas for the EM 

algorithm to the two dimensional normal mixture case.  Equation 5.20 gives the first 

derivatives of the log likelihood necessary for applying the NR algorithm.  The NR algorithm 

also requires the second derivatives of the log likelihood, which are described below.  First, the 

Kronecker delta is extended to the two dimensional case.  Define mnklδ  as the two 

dimensional Kronecker delta, 
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The second derivatives of the log likelihood contain mnklδ  and are given below. 
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 Equations 5.28 – 5.33 are used to form the Hessian matrix necessary for implementing 

the Newton-Raphson algorithm.  See Section 4.3.3 for further details on the NR and EM/NR 

hybrid algorithms. 

 
5.2.4 Calculating Confidence Intervals 
 
 In this section, confidence intervals are derived for the posterior probability of the 

( , )thi j  observation falling in the ( , )thk l cluster, or ijklα .  The value of the ijklα ’s determines 

which cluster an observation is assigned to.  For values of ijklα  that are close together for 

multiple ( , )k l  pairs, a confidence interval may help the user to determine which cluster to 
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place the observation, ijy , in.  If the confidence intervals for ijklα  overlap for a given ( , )i j  

pair, the observation ijy  could be placed in more than one cluster.  Thus, the confidence 

intervals for ijklα  help to support the use of overlapping clusters.  Overlapping clusters may be 

desirable in some clustering situations. 

 The derivation of the confidence interval for ijklα  makes use of the delta method.  The 

delta method is frequently used for finding the asymptotic variances of functions of parameters 

(Bickel and Doksum, 2001).  Equation 5.34 is obtained by plugging the parameter estimates 

into Equation 5.22, or: 
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The delta method has the form: 
 
 

 l( ) ( ) ( )' ' ,
T

ijklV f fα θ θ = Σ   
 (5.35) 

 
where θ  represents the vector of unknown parameters in l ijklα , which are ,  ,  and kl kl klπ τ σ .  

The T refers to the matrix transpose operation.  The first derivative of f with respect to these 

parameters is: 
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The symmetric matrix Σ  is: 
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The derivatives needed for Equation 5.35 are shown below and are derived in Appendix 5.3.  

The derivative of  l ijklα  with respect to klπ  is: 
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The derivative of  l ijklα  with respect to klτ  is: 
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The derivative of  l ijklα  with respect to klσ  is: 
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Note that all of the parameter estimates are required to solve Equations 5.38 – 5.40.  

The elements of Σ  are obtained from the corresponding elements of ( )1I θ− , where I is the 

Fisher information matrix.  This is calculated by taking the negative of the inverse of the 

Hessian matrix defined in Chapter 4.  The Hessian matrix does not include the estimate for 

*CCπ  since it can be found from the constraint 
*

*

*
1 1

    

1
C C

klCC
k l
kl CC

π π
= =
≠

= − ∑ ∑ .  The missing elements 

of the Hessian matrix related to *CC
π  are obtained by plugging the estimated values into the 

appropriate derivatives.  Once the algorithm terminates, estimates for all of the parameter 

values are available. 

 A confidence interval for posterior probability, ijklα , may be calculated as: 

 
 l l

1 / 2 ( ),ijkl ijklz Varαα α−±  (5.41) 
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where 1 / 2z α−  is the usual 100(1 / 2)α−  percentile of the standard normal distribution.  For 

example, to obtain 95 percent confidence limits, 0.05α =  and 1 / 2 1.96z α− = . 

 Confidence intervals may also be calculated for the cluster specific parameters.  

Equation 5.42 gives the confidence interval formula for the group proportion, klπ . 

 

 l l
1 / 2 ( )kl klz Varαπ π−±  (5.42) 

 
Equation 5.43 gives the confidence interval formula for the group mean, klτ . 

 

 1 / 2 ( )kl klz Varατ τ−±� �  (5.43) 

 
Equation 5.44 gives the confidence interval formula for the group standard deviation, klσ .   

 

 l l
1 / 2 ( )kl klz Varασ σ−±  (5.44) 

 
By the invariance property of the MLE, the confidence intervals for the group variance, 2

klσ , 

are found by squaring the estimate obtained for klσ  and applying the usual confidence interval 

formula. 

 
5.2.5 Analysis of Simulated Data 
 
Simulated 4 Component Two Dimensional Normal Mixture 
 
 A four component two dimensional normal mixture model is simulated in order to 

introduce two dimensional clustering.  For illustration purposes, three four component two 
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dimensional normal mixture distributions are simulated and analyzed.  The first simulation has 

different proportions, well separated means, and small variances.  The second simulation has  

equal proportions and different means and variances.  The third simulation has equal 

proportions and variances but different means.  The SAS code for simulating two dimensional 

normal mixture distributions is given in Appendix 5.4. 

The data for the first two dimensional mixture distribution are simulated using the 

parameter values shown in Table 5.5.   

 
Table 5.5: Parameters for 4 Component Two Dimensional Normal Mixture Model with 

Different Proportions, Different Means, and Different Variances 
Cluster Number Proportion Mean Variance

1 0.600 5.000 1.000
2 0.200 10.000 2.000
3 0.100 15.000 3.000
4 0.100 20.000 4.000

 

Even for such well separated clusters, the normal mixture density is complicated as 

shown in Figure 5.6. 

0 5 10 15 20 25
Value  

Figure 5.6: 4 Component Two Dimensional Normal Mixture Density Plot for First 
Simulation 

 
 



189 

 

 There are several modes visible in Figure 5.6.  The large mode on the left is due to a 

large percentage of the observations being concentrated in this region. The density is rather flat 

on the right hand side.  This could make the estimation more difficult.  There were 1,000 

observations simulated according the parameters given in Table 5.5.  Each observation was 

randomly generated from one of four normal distributions.  Each observation was also 

randomly assigned a unique (row, column) pair.  The rows assigned ranged from 1 – 10 and 

the columns assigned ranged from 1 – 100.  The two dimensional parametric clustering 

algorithm differs from the one dimensional parametric clustering algorithm in that it keeps 

track of the two dimensional indices.  A color map could be constructed from the (row, 

column) indices associated with each observation.  Each of the four clusters would be 

represented in a different color.  The cluster assignments are made based on the maximum 

posterior probability. 

A 4 component two dimensional mixture distribution was fitted.  The starting values 

were generated from a k-means cluster analysis.  These starting values are shown in Table 5.6. 

 
Table 5.6: Starting Values for First Simulation of 4 Component Two Dimensional Normal 

Mixture Model 
Cluster Number Proportion Mean Variance

1 0.079 20.687 1.902
2 0.094  15.766 2.025
3 0.195 10.270 1.420
4 0.632 5.104 0.971

 

The model converged in 1 second on a 1.5 gigahertz Windows XP machine and 

required 165 EM algorithm iterations.  The log likelihood for the model was -2504.63, the AIC 

was 5031.26, and the BIC was 5085.25.  The parameter estimates are reported in Table 5.7. 
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Table 5.7: Fit Results for First Simulation of 4 Component Two Dimensional Normal 
Mixture Model 

Actual Parameters Estimated Parameters 
Proportion Mean Variance Proportion Mean Variance 

0.600 5.000 1.000 0.629 5.099 1.970 
0.200 10.000 2.000 0.196 10.228 1.661 
0.100 15.000 3.000 0.100 15.898 3.189 
0.100 20.000 4.000 0.074 20.725 2.103 

 

Notice in Table 5.7 that the proportions and means were estimated reasonably 

accurately.  The estimated variances are not as accurate.  In general, the mean estimation is 

more accurate than the variance estimation.  This is due to the difficulty in discerning where 

the tails of the normal component distributions lie in the mixture distribution.  The best case 

cluster labeling algorithm described in chapter 2 is applied.  The kappa statistic is 0.906, the 

weighted kappa statistic is 0.943, the Rand index is 0.962, and the adjusted Rand index is 

0.924.  All of these statistics (discussed in Chapter 2) indicate good agreement between the 

mixture model clustering and the true simulated clusters.   

 
The parameters for the second 4 component two dimensional normal mixture 

distribution simulation are given in Table 5.8. 

 
Table 5.8: Parameters for 4 Component Two Dimensional Normal Mixture Model with 

Equal Proportions, Different Means, and Different Variances 
Cluster Number Proportion Mean Variance

1 0.250 5.000 1.000
2 0.250 10.000 2.000
3 0.250 15.000 3.000
4 0.250 20.000 4.000

 

Even for such well separated clusters, the normal mixture density is complicated as 

shown in Figure 5.7. 
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0 5 10 15 20 25
Value  

Figure 5.7: 4 Component Two Dimensional Normal Mixture Density Plot for Second 
Simulation 

 
 

There are four distinct modes present in Figure 5.7.  This is the ideal situation for the 

estimation of the component density parameters.  There were 1,000 observations simulated 

according the parameters given in Table 5.8.  Each observation was randomly generated from 

one of four normal distributions.  Each observation was also randomly assigned a unique (row, 

column) pair.  The rows assigned ranged from 1 – 10 and the columns assigned ranged from 1 

– 100.  The two dimensional parametric clustering algorithm differs from the one dimensional 

parametric clustering algorithm in that it keeps track of the two dimensional indices.  A color 

map could be constructed from the (row, column) indices associated with each observation.  

Each of the four clusters would be represented in a different color.  The cluster assignments are 

made based on the maximum posterior probability. 

A 4 component two dimensional mixture distribution was fitted.  The starting values 

were generated from a k-means cluster analysis.  These starting values are shown in Table 5.9. 
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Table 5.9: Starting Values for Second Simulation of 4 Component Two Dimensional 
Normal Mixture Model 

Cluster Number Proportion Mean Variance
1 0.216 20.547 2.159
2 0.236  15.436 1.630
3 0.292 10.369 1.526
4 0.256 5.167 1.161

 

The model converged in 1 second on a 1.5 gigahertz Windows XP machine and 

required 256 EM algorithm iterations.  The log likelihood for the model was -2959.91, the AIC 

was 5941.83, and the BIC was 5995.81.  The parameter estimates are reported in Table 5.10. 

 
Table 5.10: Fit Results for Second Simulation of 4 Component Two Dimensional Normal 

Mixture Model 
Actual Parameters Estimated Parameters 

Proportion Mean Variance Proportion Mean Variance 
0.250 5.000 1.000 0.246 5.086 1.021 
0.250 10.000 2.000 0.278 10.132 1.646 
0.250 15.000 3.000 0.279 15.404 3.346 
0.250 20.000 4.000 0.196 20.697 2.119 

 
 

Notice in Table 5.10 that the proportions and the means were estimated reasonably 

accurately.  The variance estimates are not as accurate.  The best case cluster labeling 

algorithm described in chapter 2 is applied.  The kappa statistic is 0.890, the weighted kappa 

statistic is 0.932, the Rand index is 0.926, and the adjusted Rand index is 0.805.  All of these 

statistics (discussed in Chapter 2) indicate good agreement between the mixture model 

clustering and the true simulated clusters.   

 
The parameters for the third 4 component two dimensional normal mixture distribution 

simulation are given in Table 5.11. 
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Table 5.11: Parameters for 4 Component Two Dimensional Normal Mixture Model with 
Equal Proportions, Different Means, and Equal Variances 

Cluster Number Proportion Mean Variance
1 0.250 5.000 2.000
2 0.250 10.000 2.000
3 0.250 15.000 2.000
4 0.250 20.000 2.000

 
 

Even for such well separated clusters, the normal mixture density is complicated as 

shown in Figure 5.8. 

0 5 10 15 20 25
Value  

Figure 5.8: 4 Component Two Dimensional Normal Mixture Density Plot for Third 
Simulation 

 

There are four distinct modes present in Figure 5.8.  This is the ideal situation for the 

estimation of the component density parameters.  There were 1,000 observations simulated 

according the parameters given in Table 5.11.  Each observation was randomly generated from 

one of four normal distributions.  Each observation was also randomly assigned a unique (row, 

column) pair.  The rows assigned ranged from 1 – 10 and the columns assigned ranged from 1 

– 100.  The two dimensional parametric clustering algorithm differs from the one dimensional 

parametric clustering algorithm in that it keeps track of the two dimensional indices.  A color 

map could be constructed from the (row, column) indices associated with each observation.  
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Each of the four clusters would be represented in a different color.  The cluster assignments are 

made based on the maximum posterior probability. 

A 4 component two dimensional mixture distribution was fitted.  The starting values 

were generated from a k-means cluster analysis.  These starting values are shown in Table 

5.12. 

 
Table 5.12: Starting Values for Third Simulation of 4 Component Two Dimensional 

Normal Mixture Model 
Cluster Number Proportion Mean Variance

1 0.228 20.331 1.891
2 0.288  10.125 1.751
3 0.245 15.170 1.846
4 0.239 4.961 2.371

 
 
The model converged in 1 second on a 1.5 gigahertz Windows XP machine and 

required 23 EM algorithm iterations.  The relatively short number of iterations required for 

convergence is due in part to the estimation of a common variance term.  The log likelihood 

for the model was -3048.45, the AIC was 6112.89, and the BIC was 6152.16.  The parameter 

estimates are reported in Table 5.13. 

 
Table 5.13: Fit Results for Third Simulation of 4 Component Two Dimensional Normal 

Mixture Model 
Actual Parameters Estimated Parameters 

Proportion Mean Variance Proportion Mean Variance 
0.250 5.000 2.000 0.236 5.007 2.511 
0.250 10.000 2.000 0.298 10.145 2.511 
0.250 15.000 2.000 0.241 15.235 2.511 
0.250 20.000 2.000 0.227 20.270 2.511 

 
 

Notice in Table 5.13 that the proportions and means were estimated reasonably 

accurately.  The estimated common variance is not as accurate.  The best case cluster labeling 
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algorithm described in chapter 2 is applied.  The kappa statistic is 0.853, the weighted kappa 

statistic is 0.910, the Rand index is 0.899, and the adjusted Rand index is 0.731.  All of these 

statistics (discussed in Chapter 2) indicate good agreement between the mixture model 

clustering and the true simulated clusters.   

 
Simulated 20 Component Two Dimensional Normal Mixture 
 

We simulated 100 sets of 1,000 observations for a 20 component two dimensional 

normal mixture.  The same random number seeds were used throughout the simulation.  The 

parameters used for the simulation are given in Table 5.14.  A k-means cluster analysis was 

used to generate the starting values. 

The means (Equation 5.6) and variances (Equation 5.7) of Y for the mixture distribution 

are comparable for multiple runs of simulated data.  For the data simulated using the parameter 

values reported in Table 5.14, Figure 5.9 shows a scatter plot of the expected values of Y.   
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Figure 5.9: Scatter Plot of Expected Values of Y for 20 Component Two Dimensional 

Normal Mixture Simulation with 100 Runs 
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Table 5.14: Parameters for Simulation of 20 Component Two Dimensional Normal 
Mixture Model 

Cluster Number Proportion Mean Variance
1 0.240 5.000 1.000
2 0.120 10.000 2.000
3 0.060 15.000 3.000
4 0.090 20.000 4.000
5 0.090 25.000 5.000
6 0.040 30.000 6.000
7 0.020 35.000 7.000
8 0.010 40.000 8.000
9 0.015 45.000 9.000
10 0.016 50.000 10.000
11 0.060 55.000 11.000
12 0.030 60.000 12.000
13 0.015 65.000 13.000
14 0.022 70.000 14.000
15 0.022 75.000 15.000
16 0.060 80.000 16.000
17 0.030 85.000 17.000
18 0.015 90.000 18.000
19 0.022 95.000 19.000
20 0.022 100.000 20.000

 

The actual mean was 33.5 and is indicated by the horizontal line in Figure 5.9.  The 

mean of the 100 simulations was 33.42 with a standard error of 0.83.  Figure 5.10 shows a 

scatter plot of the variances for Y. 
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Figure 5.10: Scatter Plot of Variances of Y for 20 Component Two Dimensional Normal 

Mixture Simulation with 100 Runs 
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The actual variance was 892.57 and is indicated by the horizontal line in Figure 5.10.  

The variance for the 100 simulations was 889.10 with a standard error of 30.09.  The 

estimation appears to be recovering the parameters reasonably well. 

 
5.2.6 Analysis of the Ross et al. (2000) Data Set 
 

The data set from Ross et al. (2000) was analyzed using two dimensional normal 

mixture model based clustering.  The full data set has expression values for 6165 genes and 60 

cell lines, for a total of 369,900 observations.  Such a large data set is computationally difficult 

to analyze using mixture models even after reducing the size of the data set via filtering.  Thus, 

for illustration purposes, we analyzed a subset of the Ross et al. (2000) data which is described 

below. 

For the data set from Ross et al. (2000) (described in detail in Section 4.2), we 

compiled a gene list containing 429 genes known to be involved in specific genetic pathways.  

These genes are listed in Appendix 5.5.  There are at least 21 pathways represented by these 

429 genes.  Each of these genes has fluorescence measurements for 60 cell lines. Thus, there 

are a total of 429 x 60 = 25,740 observations.  For computational convenience and to remove 

non-informative observations that are likely due to noise, this data was filtered using the 

method suggested below. 

First the proposed filtering method is described.  The numbers in parentheses represent 

the steps of the algorithm shown in Figure 5.11.  The initial step is to perform a clustering with 

a moderate amount of clusters (say 10 – 20 clusters) in either one or two dimensions (1).  This 

process is repeated several times (2) in order to ensure that the largest few clusters found in (1) 

are “stable” in models with similar numbers of clusters.  If the large clusters show up in the  
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Figure 5.11: Flowchart for Proposed Filtering for Two Dimensional Clustering 
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models in (1) and (2), the observations contained in the largest few clusters for the model 

having the minimum BIC value (3) are removed from the data set (4).  The logic behind this is 

that large clusters most likely contain observations which are noisy and may not be 

informative.  These large clusters typically have small means and may have small variances as 

well.  The mixture model algorithm attempts to split these noisy clusters which considerably 

slows down the overall convergence rate and produces more clusters with little added 

information.  The model usually runs more quickly with these observations removed and may 

be more likely to find moderately sized clusters of observations which may be of more interest 

to the user. 

Once the data are filtered using either the one or the two dimensional clustering 

algorithm (the two dimensional technique is preferable but not always computationally feasible 

due to the large numbers of observations that are typically present), the two dimensional 

clustering algorithm is run (5).  This is repeated for models having different numbers of 

clusters (6).  The clusters are examined to see if there are any clusters that have zero variance 

(7).  This situation occurs rarely and means that the observations contained in the cluster have 

identical values.  If this is the case, the observations contained in these clusters are removed 

since they cannot be put into any “better” clusters (8).   After removing the observations, the 

two dimensional clustering algorithm is restarted (5).  The algorithm must be restarted anytime 

that observations are removed because models with different numbers of observations do not 

have comparable likelihoods or information criteria (AIC, BIC) .  Once “enough” models have 

been run, the final model is selected based on the minimum BIC value (9).  For microarray 

data, it is often difficult to find models having the number of clusters that “minimize” the BIC.  
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This is due to the large amount of computational resources necessary to run models having 

large numbers of observations and/or clusters.  Once  the BIC value approaches an asymptote, 

the model containing the number of clusters at which the slope flattens (or at the point of 

inflection) could be chosen.  Models having higher numbers of clusters may have a slightly 

better fit but may not be worth the tradeoff between computer time and marginally improved 

cluster results. 

The data from Ross et al. (2000) is filtered and analyzed using the method suggested 

in Figure 5.11.  First, a two dimensional cluster analysis was performed on these data using k-

means starting values.  Models with 10, 15, and 20 clusters were fitted.  In each of these 

models, there was a large cluster present which contained between 30 and 40 percent of the 

observations.  Since the largest cluster appears to be stable in the models (10, 15, and 20 

clusters) examined, observations falling in this cluster (bolded in Table 5.15) are removed and 

the filtered data is reanalyzed.  The results of the 10 cluster model shown in Table 5.15 are 

used for filtering. 

 
Table 5.15: Parameter Estimates for the 10 Cluster Model 

Proportion Mean Variance
0.353 0.0001 0.0545
0.214 -0.0088 0.0110
0.185 0.0919 0.0179
0.160 -0.0011 0.0207
0.057 -0.2225 0.3240
0.012 0.1388 0.0003
0.008 0.2021 0.0006
0.008 -0.2424 0.0014
0.001 -0.7047 0.0022
0.001 0.7145 0.0044
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 Notice in Table 5.15 that the largest cluster (bolded) has a small mean.  Observations 

with small expression values are often non-informative.  Thus, this cluster may contain many 

observations that are attributable to noise.  Therefore, removing the observations that are 

contained in this cluster may help to improve the signal to noise ratio and lead to better 

estimates and faster convergence. 

The large cluster contains 9,099 observations (number genes x number samples)  which 

are removed.  The new data set has 16,641 observations.  Estimation proceeds starting with the 

10 cluster model (Table 5.16). 

 
Table 5.16: Fit Statistics for the Two Dimensional Normal Mixture Model Applied to the 

Ross Data: 16,641 Observations 
Number of Clusters Log Likelihood AIC BIC 

10 9099.49 -18140.98 -17917.11 
15 8862.63 -17637.27 -17297.60 
20 8912.93 -17707.87 -17252.41 

 
 

One of the clusters in the 25 cluster model has an actual variance of zero.  This means 

that the gene expression values were identical for this cluster.  Such clusters are not 

informative and are removed from the model as they occur from this point forward.  There 

were 173 observations removed (listed in Appendix 5.6) because they were members of the 

zero variance cluster.  This means that the likelihood, AIC, and BIC values are no longer 

comparable since the number of observations has changed.  The expression values for the 

observations falling in this cluster are 0.13033377.  Observing this many identical 

observations recorded with 8 decimal digit accuracy is unlikely and may indicate that the 

reported expression values were actually observed at a lower precision.  This could have also 

occurred due to an incorrect number of significant digits being retained after transforming 
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the data.  The estimation begins anew with the 10 cluster model with 16,468 observations 

with the filtered observations removed (Table 5.17). 

 
Table 5.17: Fit Statistics for the Two Dimensional Normal Mixture Model Applied to the 

Ross Data: 16,468 Observations 
Number of Clusters Log Likelihood AIC BIC 

10 6982.54 -13907.08 -13683.52 
15 7214.30 -14340.60 -14001.40 
20 7905.27 -15692.53 -15237.70 
25 7414.84 -14699.68 -14198.59 
#  #  #  #  

100 7902.75 -15183.50 -12785.98 
 
  

The log likelihoods oscillate somewhat for different numbers of clusters (Table 5.17).  

The models are not nested because the clusters in a model having a certain number of 

clusters cannot necessarily be reproduced by combining clusters from a model containing a 

larger number of clusters.  For example, consider the density for the two cluster case shown 

in Equation 5.45 and the density for the three cluster case shown in Equation 5.46. 

 

 ( ) ( ) ( )2 2
1 1 2 2,  1 ,  iyf πφ µ σ π φ µ σ= + −  (5.45) 

 

 ( ) ( ) ( ) ( )2 2 2
1 1 1 2 2 2 1 2 3 3,  ,  1 ,  iyf π φ µ σ π φ µ σ π π φ µ σ= + + − −  (5.46) 

 
If 2 0π =  in Equation 5.46, the three component mixture becomes a two component mixture 

like the one shown in Equation 5.45.  However, any observations that were actually from the 

( )2
2 2,  φ µ σ  distribution must be assigned to one of the other two clusters.  If all of these 

observations were assigned to only one of the other clusters, the model would be nested.  
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However, there is no guarantee that this will occur and thus there is no guarantee that the 

models are nested.   

Since the models are not nested, the likelihood may not be strictly monotonic.  The 

general trend of the likelihood function for increasing values of C follows an expected 

pattern.  That is, it increases.  However, as previously stated, the likelihood function may 

oscillate for consecutive values of C.  This is mainly due to convergence issues.  In practice, 

an analyst may plot the likelihoods and look for the point at which the likelihoods begin to 

taper.  The model containing the number of clusters at which such an asymptote occurs may 

be selected as the model with the “optimal” number of clusters. 

Appropriate starting values become more difficult to select as the number of clusters 

increases.  The convergence time also increases significantly with the number of clusters.  It 

is our experience (Chapter 4) that microarray data tend to have large numbers of clusters 

present.  Thus, a model containing 100 clusters was run.  This model took several hours to 

run on a high speed Unix workstation with few competing jobs.  The BIC is much lower for 

this model than for the 10 – 25 cluster models.  Ideally, many different models would be run 

and the BIC would be plotted to determine where it reaches an asymptote.  However, such an 

approach is not feasible due to limited computing resources.  The “true” number of clusters 

is likely significantly larger than 100.  This model could provide useful clusters, even though 

it may not be the “optimal” model. 

 The results of the 100 cluster model were first ranked from lowest to highest variance 

and then ranked from highest to lowest mean.  The ranking is done in this manner because 

clusters with higher means and lower variances are more likely to be informative since they 
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are being expressed at higher levels.  The parameter estimates for the 50 top ranked clusters 

(according to this method) from the 100 cluster model are given in Table 5.18. 

 
Table 5.18: Parameter Estimates for the Top 50 Ranked Clusters from the 100 Cluster 

Model 
Number Proportion  Count Mean Variance 

1 0.00018219 3 -0.01322830 0.00000001 
2 0.00018219 3 -0.01772880 0.00000001 
3 0.00176120 29 0.11897956 0.00000282 
4 0.00133609 22 0.11907273 0.00000283 
5 0.00103243 17 0.11901975 0.00000289 
6 0.00030366 5 -0.01682870 0.00000405 
7 0.00072877 12 -0.01472840 0.00000491 
8 0.00024292 4 -0.01660360 0.00000506 
9 0.00121462 20 -0.01570350 0.00000528 
10 0.00042512 7 -0.01580000 0.00000579 
11 0.00030366 5 -0.01502850 0.00000608 
12 0.00018219 3 -0.01622860 0.00000662 
13 0.00018219 3 -0.01472840 0.00000675 
14 0.00024292 4 -0.01547850 0.00000675 
15 0.00018219 3 -0.01622860 0.00000675 
16 0.00297583 49 0.11948945 0.00000781 
17 0.00157901 26 0.11993022 0.00000949 
18 0.00091097 15 0.04295527 0.00001285 
19 0.00248998 41 0.11999555 0.00001446 
20 0.00419045 69 0.04262931 0.00001795 
21 0.00425118 70 0.12170162 0.00004005 
22 0.00115389 19 0.00470677 0.00006149 
23 0.00340095 56 0.00377446 0.00007608 
24 0.00248998 41 0.00517476 0.00007969 
25 0.00394753 65 -0.04162680 0.00013590 
26 0.00261144 43 -0.03978880 0.00014267 
27 0.00097170 16 -0.23425220 0.00044511 
28 0.00121462 20 -0.23083700 0.00053594 
29 0.00097170 16 -0.23687100 0.00071334 
30 0.00048585 8 -0.22449200 0.00083003 
31 0.00048585 8 -0.22749190 0.00109679 
32 0.00072877 12 -0.23844250 0.00118085 
33 0.00072877 12 0.08592268 0.00368708 
34 0.00097170 16 0.17897769 0.07394535 
35 0.00091097 15 -0.16045030 0.10694560 
36 0.00060731 10 -0.11224170 0.14280320 
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Table 5.18: Parameter Estimates for the Top 50 Ranked Clusters from the 100 Cluster 
Model (continued) 

Number Proportion  Count Mean Variance 
37 0.00267217 44 -0.08861490 0.15812844 
38 0.00078951 13 -0.11782530 0.16888789 
39 0.00115389 19 -0.08862410 0.18876703 
40 0.00042512 7 0.15229334 0.19527841 
41 0.00078951 13 -0.12256280 0.20491500 
42 0.00085024 14 -0.06092030 0.22709623 
43 0.00085024 14 -0.05321190 0.24540903 
44 0.00394753 65 -0.10954510 0.25338310 
45 0.00036439 6 -0.01701320 0.27409305 
46 0.00030366 5 0.22560336 0.29605262 
47 0.00078951 13 0.05418408 0.29834202 
48 0.00030366 5 0.00691714 0.31286753 
49 0.00018219 3 0.38069299 0.47621969 
50 0.00054658 9 0.25091027 0.53135585 

 

If the assumptions for the normal mixture model hold, then a normal density should 

fit well for the individual clusters.  Many of the variances in Table 5.18 are quite small.  

Small variances result in a peaked normal density with a small spread.  As the number of 

clusters increases, clusters such as these are more likely to occur.  Clusters one and two have 

only three observations and thus are likely not useful for a diagnostic tool.  Table 5.19 shows 

the cluster members for cluster number three reported in Table 5.18.   

Observe in Table 5.19 that there are several groups of observations that have identical 

expression values.  Such a result is unlikely (as discussed above).  However, such 

observations do tend to fall in the same distribution and thus the normal mixture model based 

clustering places them into the same cluster.  If the identical observations had fallen into the 

same cluster, they would have been removed in the filtering process.  The density for  cluster 

three is shown in Figure 5.12. 
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Table 5.19: Cluster Members for Cluster Number 3 
Gene Cell Line Expression Value
W79419 1 0.12057393 
AA057359 2 0.12057393 
AA046312 3 0.1172713 
AA056232 5 0.12057393 
AA045090 6 0.12057393 
H26976 8 0.12057393 
N93479 10 0.12057393 
AA025275 12 0.1172713 
N72074 13 0.1172713 
AA026222 15 0.1172713 
W86907 18 0.1172713 
AA046316 19 0.1172713 
AA035619 21 0.12057393 
W46479 23 0.1172713 
AA040777 23 0.12057393 
AA047408 25 0.1172713 
AA031493 31 0.12057393 
AA056232 31 0.12057393 
AA047408 33 0.12057393 
R16808 33 0.1172713 
H85095 35 0.1172713 
AA057728 35 0.12057393 
R59373 37 0.1172713 
AA057728 38 0.12057393 
AA047268 43 0.1172713 
H95849 47 0.12057393 
AA039599 52 0.1172713 
N48061 55 0.12057393 
AA042879 60 0.1172713 
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Figure 5.12: Density Plot for Cluster Three 
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There are two distinct modes present in Figure 5.12.  This is due to the two groups of similar 

valued observations shown in Table 5.19.  This cluster would readily divide into two clusters 

if a model with a larger number of clusters were fitted. 

The density for the 16,468 observation filtered data set (Table 5.17) is shown in 

Figure 5.13. 

 
Figure 5.13: Density Plot for 16,468 Observations 

 

Figure 5.13 looks similar to a normal distribution except for the wide tails.  The 

observations contained in these tails may be noisy and one may wish to consider a filtering 

method which removes them.  However, there may be modes that are not visible in the tails 

which could represent clusters. 

  The plot was generated by fitting a normal density to a histogram having 100 

“bars”.  There are modes present that are not visible at the current resolution.  Increasing the 

number of “bars” for the histogram results in plots with wider tails.  Since the mixture 

density (Figure 5.13) closely resembles the normal density, the estimation becomes more 

difficult than it would be with a more multimodal mixture density.  The mean and variance 

for the data are -0.0009652 and 0.04650166, respectively. 

 For the normal mixture model, the observations in an individual cluster are expected 

to come from the same normal distribution.  The densities for several of the clusters are 
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shown below.  Figure 5.14 shows the density for a cluster of size 806 which is similar to a 

normal density, although the tail on the right contains a “bump” which could represent 

observations that would be included in a separate cluster in a model having more than the 

100 clusters fitted here.  The mean for this cluster is 0.08597038 and the variance is 

0.00096818.  This illustrates that the two dimensional clustering algorithm puts together 

clusters based on the expression values belonging to the same distribution.  Such information 

may be helpful in a diagnostic setting because genes and cell lines from a distribution of 

expression values may be indicative of the biological “state” of the cell, that is observed with 

random error.  The expression values for the genes and cell lines in the medium sized 

clusters could be used to develop assays for typing an unknown cell.  This could be 

particularly useful for identifying similar types of tumor cells. 
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Figure 5.14: Density Plot for Two Dimensional Cluster of Size 806 

 
 
 Other clusters such as the one shown in Figure 5.15 are also similar to the normal 

density (unimodal) except for the “chatter” at the top of the density.  Such chatter may be 

indicative of other sub-clusters.  This cluster has 941 observations, and a mean and variance 



209 

 

of 0.05936204 and 0.01851001, respectively.  The variance is higher for this cluster, and 

provides a further indication that other sub-clusters may exist.  
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Figure 5.15: Density Plot for Two Dimensional Cluster of Size 941 

 
 

 Some clusters such as the one shown in Figure 5.19 exhibit modes that are well 

separated.  The mean and variance for this cluster are 0.07769306 and 0.00413041, 

respectively.  The variance is still quite small for a cluster of size 1365.  Two well separated 

modes are visible in Figure 5.16, and this cluster could be readily split into two separate 

clusters. 
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Figure 5.16: Density Plot for Two Dimensional Cluster of Size 1365 
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 Finally, there are large clusters that clearly need to be split into multiple clusters.  

Such a cluster is shown in Figure 5.17.   
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Figure 5.17: Density Plot for Two Dimensional Cluster of Size 1175 

 
 

The cluster in Figure 5.17 has 1175 observations and a mean and variance of 

0.00387388 and 0.00007562, respectively.  The mean and variance are both quite small for 

this cluster, indicating that the members of this cluster have small expression values.  Such a 

result may arise from groups of “noisy” genes.  Numerical precision could also be a factor in 

the inability to separate these observations in the 100 cluster model.  It is apparent from 

Figure 5.20 that this cluster could be further subdivided.  However the need for this may be 

questionable since the range of the observations seems negligible. 

 The two dimensional clustering algorithm groups observations that are likely to have 

come from the same normal distribution.  For microarray data, this often yields clusters 

which are “tight” in the sense that they have small variances.  It is difficult to discover gene 

pathways using this approach because observations with numerically similar gene expression 

values do not necessarily fall on the same pathways.  Therefore, we suggest that the two 



211 

 

dimensional clustering technique be applied to microarray data for which the goal is to 

develop assays or diagnostic tests.  Groups of genes and cell lines which cluster together may 

be useful in typing an unknown cell based on its gene expression levels. 

 
5.2.7 Interpreting the Cluster Results 

 Interpreting the cluster results for the two dimensional normal mixture model clustering 

algorithm is unlike interpreting the cluster results of other techniques.  Each observation has 

two indices associated with it.  For the Ross et al. (2000) microarray data, one of these indices 

is the gene identifier and the other index is the cell line number.  The cluster members for a 

cluster from the Ross data set analysis are shown in Table 5.20.  The mean of the observations 

in this cluster is -0.0886241 and the variance is 0.18876703. 

 
Table 5.20: Cluster Members for a 19 Observation Cluster 

Gene Cell Line Tumor Type Expression Value 
AA054290 1 Non-Small Cell Lung Cancer 1.11058971 
AA026207 2 Non-Small Cell Lung Cancer -0.229148 
AA031671 2 Non-Small Cell Lung Cancer -0.229148 
AA036724 5 Non-Small Cell Lung Cancer -0.236572 
W92696 7 Non-Small Cell Lung Cancer -0.2596373 
AA040878 8 Non-Small Cell Lung Cancer -0.19382 
AA045192 9 Non-Small Cell Lung Cancer -0.251812 
AA026796 10 Colon Cancer -0.2076083 
AA044233 11 Colon Cancer -0.2146702 
R83277 15 Colon Cancer -0.2676062 
W93802 19 Breast Cancer -0.19382 
H50438 23 Breast Cancer -0.2218488 
AA046035 24 Breast Cancer 1.17318627 
R83277 32 Leukemia -0.229148 
R11631 34 Melanoma -0.2676062 
W42423 43 Leukemia -0.2441251 
W78128 46 Renal Cancer -0.2596373 
AA054226 56 Central Nervous System Cancer -0.19382 
H65189 58 Central Nervous System Cancer -0.2676062 
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Notice that the observations colored in pink in Table 5.20 are from the same gene 

(R83277) but different cell lines (15 and 32).  The observations colored in green are from the 

same cell line (2) but different genes (AA026207 and AA031671) and have the same gene 

expression value (-0.229148).  There are 18/429 genes and 18/60 cell lines represented in 

this cluster.  Duplicates for either the cell lines or the genes in a single cluster are expected 

due to the two dimensional nature of the clustering and may represent a biologically 

interesting reason for this combination of genes and cell lines clustering together. 

 Figure 5.21 shows the density plot for the 19 observation cluster.  There are two modes 

apparent in this figure.  The mode on the left is more prominent in the sense that it contains 

more observations.  Such a cluster could be split in a model with more clusters.  The bimodal 

nature of Figure 5.18 may be due in part to the small cluster size of 19. 

-0.5 0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

2.0

2.5

 
Figure 5.18: Density Plot for a 19 Observation Cluster 

 
 

5.2.8 Analysis of a Selected Subset of the Ross et al. (2000) Data Set 
 
 In order to further evaluate our method using microarray data, a selected subset (chosen 

by Dr. Windle) of the Ross et al. (2000) data was analyzed.  This data set contains 77 genes for 

60 cell lines, or a total of 4,620 observations.  21 of these genes are known to be in the melanin 
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pathway.  There are a total of 8 melanoma cells present in the 60 cell lines.  The melanin genes 

are typically highly expressed when present.  I was blinded as to the identities of the cell and 

gene labels.  A density plot for this data subset is given in Figure 5.19. 
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Figure 5.19: Density Plot for 77 Gene Selected Subset 

 
The mean of the observations is 0.021 and the variance is 0.071.  There may be modes that are 

not visible at this scale, particularly in the long left tail. 

 An eleven cluster model was chosen based on the cluster density plots being unimodal 

in appearance.  (The BIC model selection criteria suggested a three cluster model, but these 

clusters were too large to be readily interpretable.  These large clusters may serve as a starting 

point for generating further sub-clusters.)  The parameter estimates for the eleven cluster model 

are given in Table 5.21.  The clusters are sorted by mean.  Notice that cluster 7 contains 52 

percent of the observations and has a small mean (-0.082).  Once again, observations in such a 

cluster would be removed if the filtering method presented in Figure 5.11 were applied.  

Clusters 2 and 5 are bolded because they were found to contain many of the genes in the 
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melanin pathway and many of the melanoma cell lines.  Notice that these clusters also have 

the largest mean expression values, which is consistent with the literature which suggests 

that melanin is highly expressed when present (Ross et al., 2000). 

 
Table 5.21: Parameter Estimates for 11 Cluster Model 

Cluster # N Proportion Mean Variance
5 87 0.019 0.723 0.01514
2 288 0.062 0.431 0.00392
3 405 0.088 0.277 0.00122
9 549 0.119 0.172 0.00052
11 405 0.088 0.098 0.00015
10 273 0.059 0.010 0.00005
7 2418 0.523 -0.082 0.01835
6 23 0.005 -0.450 0.00004
8 26 0.006 -0.570 0.00014
1 127 0.027 -0.723 0.02476
4 19 0.004 -1.311 0.04847

 

The densities for clusters 2 and 5 are plotted in Figure 5.20. 

 

 
Figure 5.20: Density Plot for Clusters 2 and 5 
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Cluster 2 is shown in yellow in Figure 6.20, while cluster 5 is shown in white.  Cluster 

2 contains 288 observations and has a mean and variance of 0.431 and 0.004, respectively.  

Cluster 5 contains 87 observations and has a mean and variance of 0.723 and 0.015, 

respectively.  Since these clusters are adjacent to each other and appear to be quite similar 

(Figure 6.20), it is possible that these two clusters need not have been split and can be 

combined to form a single cluster.   

The second cluster contains 7 out of 8 of the melanoma cell lines and 16 out of 21 of 

the genes known to be active in the melanin pathway.  The fifth clusters contains 2 out of 8 of 

the melanoma cell lines and 9 out of 21 of the genes known to be active in the melanin 

pathway.  Thus, our method has correctly identified many (gene, cell line) pairs for the 

melanoma cells and the genes in the melanin pathway. 

 
5.3 Conclusion 
 

The advantage of using parametric models, such as the normal mixture model, for 

clustering is that one can formally evaluate the model fit by using likelihood based statistics.  

Normal mixture models for clustering require the number of clusters to be specified.  Section 

4.3.5 introduced three criteria for evaluating the fit of a mixture model and suggested the 

Bayesian Information Criterion (BIC) as the measure of choice.  Alternative methods for 

evaluating the model fit are described in McLachlan and Peel (2000).  Currently, multiple 

models having different numbers of clusters must be fit and the best fitting model selected 

using statistics such as the BIC.  In order to lessen this workload, more research is needed on 

determining a priori how many clusters are expected.  This problem is listed as a future 

research problem in Chapter 6. 
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 In cases where large numbers of clusters are present, there are frequently a handful of 

very large clusters present.  This circumstance could negatively affect the accuracy of the 

estimation for the numerous remaining smaller clusters, since the large clusters often contain a 

high degree of noise.  One option recommended above for analyzing such data is to remove the 

observations which are members of large clusters and to re-cluster the remaining observations.  

This technique may help in focusing on signals of interest which are often contained in the 

smaller clusters.  Another option for analyzing large data sets is to initially fit a mixture model 

containing a moderate number of clusters and then to re-cluster these clusters individually.  

Such an approach is faster than simply fitting a model having a large number of clusters 

initially, and the results will be identical. 

 The analyses of the two dimensional microarray data presented in this chapter do not 

require the data to be collapsed.  By preserving the row and column indices, the clustering 

results maintain both dimensions of the data.  The results are simultaneous clusters of  rows 

and columns.  For microarray data, such an analysis allows groups of genes and samples to be 

established.  The results are often presented in the form of a color map, where the rows and 

columns indicate the row and the column from which the observation came and the color 

indicates the cluster.  Color maps become difficult to interpret for large numbers of clusters, as 

it can be hard to distinguish similar shades of colors, and thus are not shown for the 100 cluster 

model of Section 5.2.6.  An alternative is to examine lists of cluster members manually, which 

becomes tedious.  There is a need, as suggested in Chapter 6, for more research on techniques 

for displaying and interpreting cluster results. 
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 The two dimensional mixture model clustering algorithm has several advantages.  It 

provides a measure of how well a model with a given number of clusters fits the data.  The 

method is not sensitive to the ordering of the data, as many hierarchical clustering methods can 

be.  Missing observations are easily handled, as each cluster has a normal distribution and for 

moderate sample sizes a missing observation will not strongly affect the parameter estimation. 

The summary statistics for one dimensional clustering methods that require summarizing the 

data in one dimension must be modified to handle missing observations. Missing observations 

may bias the results of such methods.  The cluster assignments are flexible in the sense that 

each observation has a posterior probability of belonging to every cluster.  Cluster assignments 

are typically made according to the maximum posterior probability.  However, if the posterior 

probabilities of an observation belonging to several clusters are similar, cluster assignments 

may be based on a lower ranked posterior probability.  Confidence intervals for these posterior 

probabilities may also be calculated and help to support the use of overlapping clusters.  

Posterior probability confidence intervals that overlap for a particular observation indicate that 

the observation may be more accurately assigned by allowing it to be a member of multiple 

clusters.  Finally, the two dimensional mixture clustering does not require summarizing the 

data in either dimension, as discussed above. 

 The model based parametric clustering method proposed here differs from the 

commonly used clustering methods in that the underlying distribution is not uniform.  

Therefore, differences in magnitude in the observations contained in a single cluster are 

allowed.  For a given cluster, the observations are assumed to come from the same normal 

distribution.  This is different from methods that rank the genes based on their expression 
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levels or selected effect sizes.  While both assume normality, the assumptions for the mixture 

model are on the individual clusters rather than the sample distribution.  The non-mixture 

model methods also treat differences in magnitude to be absolute and do not allow for random 

error. 

 There are a few issues that must be considered when applying the two dimensional 

mixture model clustering algorithm.  The observations are assumed to come from a mixture of 

normal distributions.  Each cluster is expected to be normally distributed.  This may not be a 

reasonable assumption for some data.  The algorithm requires starting values to be specified.  

Although the algorithm is robust with respect to starting values, choosing very poor values 

may result in the failure of the model to converge due to numerical precision issues, as well as 

potentially slow the convergence speed.  Gene independence is another major assumption 

made and is discussed further in Chapter 6. 
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Chapter 6 
 

Conclusions 
 
 

6.1 Dissertation Summary 
 

In this dissertation, a range of tools for the analysis of microarray data was 

presented.  The first chapter introduced microarray technology, explained the 

computational challenges of analyzing microarray data, and discussed the historical 

development and application of clustering techniques.   

In the second chapter, clustering techniques including similarity and distance 

measures were reviewed.  A time course microarray experiment by Chu et al. (1998) was 

introduced.  The need for filtering microarray data was explained.  In order to improve 

the interpretability of the cluster results, data smoothing was performed using LOESS.  

Filtering was performed using a method based on Pearson’s correlation between gene 

profiles and seven average profiles constructed from genes with known function.  

Clustering was performed using the average linkage and k-means clustering methods for 

both smoothed and unsmoothed data using two different filtering thresholds. 

In chapter three, three methods for re-labeling clusters to assess the agreement 

between the results from different clustering techniques were proposed.  Cluster 

agreement measures were discussed, including the kappa statistic and the Rand index.  

These measures were applied to evaluate how well average linkage clustering did versus 

a k-means clustering at reproducing known results.  Three microarray experiments 
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targeting the same cell lines and measuring many of the same genes were examined.  

Two of these experiments used Affymetrix designs (Millenium Pharmaceutical 

Company; Staunton et al., 2001).  The other experiment used  the cDNA design (Ross et 

al., 2000).  Cluster analyses were performed on each of these data sets and the results 

were compared and discussed. 

In chapter four, a parametric clustering technique based on mixture models was 

presented.  The necessary theory was developed.  The Expectation/Maximization (EM) 

algorithm was proposed for estimation.  The hybrid EM/Newton-Raphson algorithm was 

suggested for improving the convergence in some situations.  The Akaike information 

criterion (AIC) and Bayesian Information Criterion (BIC) were proposed as statistics 

useful for evaluating the model fit.  Confidence interval formulas were derived for the 

parameters.  Simulations were run in order to evaluate the ability of the EM algorithm to 

recover the parameter estimates.  Finally, the microarray data set from Ross et al.  (2000) 

was analyzed and discussed. 

In chapter five, the methods developed in chapter four were extended to support 

the analysis of two dimensional data.  The motivation behind two dimensional clustering 

applications was discussed.  The theory was extended to the two dimensional case.  A 

detailed discussion was given on the possible restrictions on the proportions (marginal 

versus global).  Data was simulated and analyzed.  Finally, the microarray data set from 

Ross et al.  (2000) was analyzed and discussed. 

A user friendly program, 2-DCluster, was written to support these methods.  This 

program was written for Microsoft Windows 2000 and XP systems and supports one and 
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two dimensional univariate clustering.  The program and sample applications are 

available at http://etd.vcu.edu.  An electronic copy of this dissertation is available at the 

same address.     

 
6.2 Other Approaches to Clustering 

 
There are several other approaches frequently used for the clustering and 

classification of microarray data.  Data mining approaches for clustering and 

classification are among the most popular.  Such approaches generally make no 

assumptions regarding the distribution of the data, and therefore are not model based.  

These include techniques such as self organizing maps and genetic algorithms which are 

frequently used in data mining applications.   

Self organizing maps (SOM) are an extension of “neural networks” (Gurney, 

1997; Bohr, 2003).  To implement an SOM, a geometry of nodes must first be chosen 

(say a 2 x 2 grid).  The nodes are initially mapped into the data space at random.  The 

location of the nodes is iteratively adjusted by randomly selecting a data point and then 

moving the nodes in the direction of that data point.  Once the algorithm has proceeded 

through a user defined number of iterations, the algorithm terminates with “similar” data 

points grouped around a specific node.  Extracting clusters from SOMs requires selecting 

a boundary around each node (or set of nodes) in order to define a cluster.  For more 

information on self organizing maps applied to microarray data analysis, see Tamayo et 

al. (1999), Toronen et al. (1999), Herrero et al. (2001), and Wang et al. (2002). 

Genetic algorithms are modeled on the biological processes of natural selection 

and evolution.  A function to be optimized, called a fitness function, must be defined.  
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The genetic algorithm (GA) maximizes this function by adjusting the values of the 

variables involved in the function.  A population of possible solutions is maintained, with 

each member of the population containing a set of values for the variables.  The fitness 

function is evaluated for every population member.  The members achieving the highest 

fitness function values are kept and used as “parents” for generating the other members of 

the population.  The “children” are generated by choosing values for the variables based 

on some combination of the values from the successful parents.  (This process is similar 

to the actions of natural selection and evolution.)  Cluster analysis using genetic 

algorithms could be done by specifying, for example, a mixture likelihood function to be 

optimized.  Many other approaches for using GAs for clustering or classification are 

possible.  For more information on genetic algorithms, see Holland (1975), Goldberg 

(1989), or Harvey (2001). 

 
6.3 Extensions and Suggestions for Future Research 

This section contains suggestions for applications which extend the results of this 

dissertation and suggests possible problems for future research.  Such applications may 

be useful for microarray data analysis, as well as being helpful in other fields.  Several 

areas of cluster analysis need further study.  Some of these areas are estimating the 

number of clusters prior to the analysis, normalizing the data, presenting clustering 

results graphically for multidimensional data, and filtering the data in order to reduce the 

noise and the computational requirements.  More specific suggestions are given in this 

section. 
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6.3.1 The Relative Contribution of Genes and Environment in Behavioral and 
Mental Disorders 

 
 Understanding the genetics of behavioral and mental disorders is a difficult 

problem.  In addition to many genes being involved in these traits, there are often 

complex environmental factors present.  Extracting the relative contributions of genetic 

and environmental influences for a given trait requires genetically informative data.  One 

of the best approaches to this problem makes use of twin data.  The two types of twins 

are monozygotic and dizygotic.  Monozygotic twins are expected to be genetically 

identical, while dizygotic twins are expected to share half of their genes on average.  This 

knowledge may be used to build models which estimate the relative contribution of genes 

and environment for a given phenotype.  However, there is no easy way to verify these 

results biologically or to determine which genes are involved. 

Neale (2003) fitted a two component bivariate mixture to twin data.  One 

component is for the monozygotic (MZ) twins, while the other is for the dizygotic (DZ) 

twins.  Each component has a two dimensional covariance matrix associated with it, with 

one observation coming from each twin.  The covariance matrix for MZ twins is given in 

Equation 6.1. 

 

 
2 2 2 2 2

2 2 2 2 2
,MZ

a c e a c

a c a c e

 + + +
 ∑ =
 + + + 

 (6.1) 

 
where a, c, and e are the components of variance due to additive genetic, common 

environmental, and specific environmental factors, respectively.  Similarly, the 

covariance matrix for DZ twins is given in Equation 6.2. 
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Neale (2003) recovers the usual additive genetic, common environment, and 

specific environment estimates by fitting a mixture model using likelihood based 

techniques.  The mixture density is: 
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 (6.3) 

 
where i represents a specific twin pair and ( )ip MZ  and ( )ip DZ  represent the probability 

of the thi  twin pair being monozygotic and dizygotic, respectively.  Twin zygosity is not 

perfectly diagnosed, as such diagnoses are generally based on surveys rather than a blood 

test.  If the true zygosity were known, then ( ) 1p MZ =  and ( ) 1p DZ = .  Neale (2003) 

runs several models with different zygosity misclassification rates specified.  In other 

words, only the covariance terms given in Equations 6.1 and 6.2 are estimated for fixed 

misclassification rates.  Neale demonstrates that the mixture model approach performs 

quite well for zygosity misclassification rates of 15 percent or less. 

 Neale’s (2003) approach requires the specification of the estimated zygosity 

misclassification rates.  Once these rates are specified, the variance components are 

estimated using structural equation models (Neale and Cardon, 1992).  The zygosity 

misclassification rates could be estimated by extending the structural equation model 

using the Expectation/Maximization (EM) algorithm.  Initial values would be specified 
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for the zygosity misclassification rates and the variance components.  A posterior 

probability (similar to that described in Chapter 4) of each observation belonging to both 

clusters could then be calculated in the Expectation step.  The posterior probability 

estimates could then be used to obtain the maximum likelihood estimates of the variance 

components.  The structural equation model could be run using these estimates to obtain 

the maximum likelihood estimates for the variance components.  This process would 

iterate until convergence was obtained. 

 As microarrays become cheaper, libraries containing DNA samples from twins 

will be built.  Two dimensional clustering approaches could be applied to cluster genes 

and twins.  Models could be built to combine the twin zygosity data with the clustering 

results.  Such an approach could help to determine not only the relative contributions of 

genes and environment, but could also indicate which genes are operating in concert.   

 
6.3.2 Evaluating the Genetic Effects of Complex Mixtures of Pollutants 

 Organizations such as the Environmental Protection Agency (EPA) are interested 

in studying complex mixtures of pollutants in the soil, air, and water.  Assuming an 

appropriate experimental design, data may be collected on multiple toxicity measures and 

their effects on gene expression over a period of time.  For each toxicity measure, a 

polynomial could be fitted to each gene across the time points.  The coefficients of the 

polynomial could then be clustered using a multivariate clustering technique.   

The toxicity measures reflect an underlying mixture of pollutants.  A two 

dimensional multivariate mixture model could be applied here.  One dimension of the 

data would be the genes and the other would be the toxicity measures.  The model is 
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multivariate due to clustering the polynomial coefficients described above.  Such an 

approach would result in two dimensional clusters of genes and toxicity measures and 

may give regulators more information than a traditional linear model based analysis.   

 
6.3.3 Combining Chemosensitivity Data with Gene Expression Data 

 There is a growing body of microarray data on chemosensitivity (Ross et al., 

2000).  These experiments are designed to collect gene expression data on samples (such 

as tumor cells) exposed to specific chemicals.  The two dimensional clustering method 

developed in this dissertation could be extended to support three dimensional clusters of 

genes, samples, and chemical exposures.  The likelihood for such a normal mixture 

model could be written as: 

 

 ( ) ( )31 2 31 2 2
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1 1 11 1 1
;  , ,  ;  , ,

NN N CC C
qrs ijk qrs

q r si j k
L yπ φ τ σ

= = == = =
= ∑ ∑ ∑∏∏∏2y π τ σ  (6.4) 

 
where 11, ,i N= … , 21, ,j N= … , and 31, ,k N= …  are the indices for the three dimensions, 

11, ,q C= … , 21, ,r C= … , and 31, ,s C= …  are the indices for the clusters 

( 1 2 31, ,qrs C C C= …  for the global constraint on the proportions), ijky  is the observation, 

and qrsπ , qrsτ , and 2
qrsσ  are the cluster specific proportions, means, and variances, 

respectively.  The log likelihood is given in Equation 6.5. 
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The development of the theory proceeds similarly to that described in Chapter 5.  

This approach could aid researchers in discovering chemicals which interrupt gene 

activity for genes that may be involved in biological processes (such as the regulation of 

cancer growth). 

 
6.3.4 One Dimensional Normal Mixture Models with Repeated Measures 
 
 The one dimensional normal mixture model was introduced in Chapter 4.  When  

data has repeated measures on the observations to be clustered, the one dimensional 

normal mixture model requires the data for each observation to be collapsed into a single 

value.  The usual method for collapsing is to take the mean of the repeated measurements 

for each observation.  However, such an approach does not take into account the 

variability of the measurements and thus loses information which could improve the 

clustering results.   

 One approach which takes this variability into account requires rewriting the 

mixture likelihood to include the repeated observations, which all come from the same 

distribution.  The normal mixture model distribution for repeated measures is: 
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where the parameters are as defined in Chapter 4, i  refers to the observation number, j 

refers to the replicate number, and k refers to the cluster number.  The likelihood for N 

observations and R replicates is: 
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The log likelihood for the N observations and R replicates with the restriction that 
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The posterior probability estimate is: 

 

 

l l l

l l l

R 2
k

j=1
R 2

r
1 j=1

 ;  ,  

,

 ;  ,  

k ij k

ik C
r ij r

r

y

y

π φ µ σ

α

π φ µ σ
=

 
 
 

=
 
 
 

∑

∑ ∑
 (6.9) 



229 

 

 
where k refers to the cluster number.  The proportion estimate is: 
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The mean estimate is: 
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The variance estimate is: 
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Finally, the estimate for homogeneous variances is: 
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 Studies comparing the results of clustering using the repeated measures normal 

mixture model and the normal mixture model using different methods of collapsing the 

data need to be performed.  Implementation issues such as convergence time should be 

examined for the normal mixture model using collapsed data versus the repeated 

measures normal mixture model.  Such studies may give the user an idea of the tradeoffs 

in convergence time and the accuracy of results between clustering repeated measures 

data using summary statistics versus performing clustering using a method which directly 

supports repeated measures. 

 
6.3.5 Data Filtering Approaches 
 
 As previously discussed, gene filtering methods play a vital role in the analysis of 

microarray data.  Methods for narrowing the focus of the analysis by eliminating non-

informative genes are helpful for reducing noise.  One such method is the Significance of 

Microarray (SAM) algorithm proposed by Tibshirani’s group at Stanford University 

(Tusher et al., 2001).  Current methods for filtering are not optimal and more work needs 

to be done in this area. 

 The SAM algorithm is permutation based and assumes that all of the genes are 

from the same population.  The SAM analysis gives a list of genes which may be 

significant.  Such a list could be used as a data filtering tool prior to cluster analysis.  

Genes having significance scores falling below a certain threshold could be treated as 

belonging to a single cluster and removed.  Briefly, the steps in the SAM algorithm are, 

1. Permute the data and compute test statistics (Equation 6.14) for each permutation. 
2. Rank the test statistics in ascending order. 
3. Compute mean test statistics for each ranking for all permutations. 
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4. Plot test statistic from the original ranking versus the mean test statistic from all 
of the permutations.  

5. Define a distance from the mean permuted value to call significant. 
6. Compute the false discovery rate (FDR) for this value. 
7. Iterate until an “appropriate” FDR is obtained. 
 

The FDR is calculated by dividing the median number of false positive genes for 

all of the permutations by the number of differentially expressed genes in the original 

data.  As an example, the t test statistic is described in more detail.  The algorithm 

essentially amounts to calculating the usual t statistic with a fudge factor as shown in 

Equation 6.14. 
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where g is the gene number, 1gy  and 2gy  are the average 2log  normalized 

hybridization values of gene g in the control and experimental strains, respectively, 2
1gs  

and 2
2gs  are the variance estimates of gene g in the wild-type and experimental strains, 

respectively, 1n  and 2n  are the sample sizes for gene g in the wild-type and experimental 

strains, respectively, and 2
0s  is a small constant (or fudge factor) based on the median 

standard deviation for all genes (Tusher et al., 2001).  The purpose of the fudge factor is 

to correct for genes which have small denominators for gd  in order to avoid an inflation 

of significance.  The SAM algorithm can miss genes with small changes in expression 

and does not easily adapt for more complex microarray designs.  The t-test is robust for 
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moderate sample sizes and hence, the SAM algorithm leads to an improvement especially 

when there are very few replicates in the design. 

 
6.4 Discussion and Limitations 
 
 This dissertation delves into the application of clustering methods to the analysis 

of microarray data.  The two dimensional normal mixture model is useful for producing 

clustering results.  However, these results should be used in collaboration with the results 

from other methods before a biological result is claimed, as there is a danger of 

oversimplifying the biology. 

 An important issue which was not fully discussed in this dissertation is data 

normalization.  There is disagreement in the literature over how to normalize microarray 

data.  Clearly, there is a need to think about normalization, particularly if one is interested 

in comparing the results of multiple experiments or multiple arrays. 

 The clustering algorithms presented in Chapters 4 and 5 require the specification 

of starting values for the parameters.  For the analyses, starting values were generated 

using the results of a k-means cluster analysis.  The Expectation/Maximization (EM) 

algorithm is not sensitive to starting values (McLachlan and Peel, 2000).  However, poor 

starting values often cause models to take much longer to converge.  Due to numerical 

precision issues, it is possible for the EM algorithm to fail to converge.  In our 

experience, this happens very rarely (< 1% of the time in the simulations).  In such cases, 

new starting values were chosen and the model was run again. 

 Clustering microarray data is a difficult task due to the high degree of noise that is 

often present.  The two dimensional clustering techniques presented in this dissertation 
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may be more easily applied to other applications.  Clustering may not be the preferred 

approach for the analysis of microarray data, but the parametric approach proposed in this 

dissertation is likely to be more useful in applications due to allowing an estimate of the 

probability of an observation belonging to any cluster. 

 Microarray data analyses assume that the gene expression measures reflect the 

underlying biology and are measured accurately.  If the data is not reliable, even complex 

statistical modeling will not yield valid results.  As microarray technology matures, it 

should be possible to obtain more accurate measures of gene expression, including 

experiments with a number of replicates.  Once microarray analysis techniques become 

more standardized and computing hardware improves, it should become easier to perform 

and analyze replicated microarray experiments.   

 The methods proposed in this dissertation are limited by the assumption of 

normality and gene independence.  These limitations are shared by most techniques for 

analyzing microarray data.  If the data is non-normal, the clustering results may be biased 

and therefore normalizing transformation should be considered.  Fortunately, there are 

tools available for evaluating the normality of data such as the Shapiro-Wilks test and 

normal quantile plots (Johnson and Wichern, 1998).  It is possible to construct nearly any 

distribution from an appropriate mixture of normal distributions.  The algorithms given in 

this dissertation could be adapted for mixtures of non-normal components. Gene 

independence is a huge assumption common to most methods for microarray data 

analysis.  This assumption is typically made in order to make the models more 

computationally tractable.  Relaxing this assumption would require some sort of 
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multivariate analysis which estimated the covariance matrix for the genes.  Replication 

aids in reducing noise and allows for a measure of variability.  Replication also allows the 

relaxation of some of the stringent assumptions such as independence across genes.  

 Studying gene expression is only the first step in understanding the biological 

processes regulated by genes.  Clustering based on the gene expression values is also 

preliminary.  Gene pathways and protein expression are much more complex problems.  

Genes can code for multiple proteins and several genes can code for the same protein.  

The proteins act on a lower biological level than genes.  Understanding the regulatory 

pathways and being able to selectively interrupt or modify protein expression is crucial to 

the development of genomic medicine.   

Clearly, there is a continued need for new approaches to the analysis of 

microarray data.  Bioinformatics is a young science and many open problems remain for 

the microarray research community.  Opportunities exist in every phase of microarray 

research, from experimental design to final analysis.   
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Chapter 1 Appendices 
 
1.1 SAS Code for Calculating Stirling Numbers 
 
/* Calculates Stirling numbers of second kind based on the formula given by Johnson and 
Wichern on page 727 */ 
 
proc iml; 
 n     = 25; 
 count = 0; 
 
 do k = 3 to 3; 
  temp = 0; 
  do j = 0 to k; 
   temp = temp + ((-1)**(k-j) * comb(k,j) * (j**n)); 
  end; 
  count = (1/fact(k))*temp; 
 end; 
 
 print count; 
 
 quit; 
 run; 
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Chapter 2 Appendices 
 
2.1 SAS Code for Calculating LOESS Smoothed Data 
 
options nodate;  
  
libname lib 'c:\eric\clusterpaper\chu\log10ratioprofile\'; 
 
data work.temp; 
 set lib.chuformatted2; 
 ratio1 = log10(ratio1); 
 ratio2 = log10(ratio2); 
 ratio3 = log10(ratio3); 
 ratio4 = log10(ratio4); 
 ratio5 = log10(ratio5); 
 ratio6 = log10(ratio6); 
 ratio7 = log10(ratio7); 
 
proc transpose data=work.temp out=work.chuformattedtransposed2; 
 
data lib.chuformattedtransposed2; 
 set work.chuformattedtransposed2; 
 if _n_ = 1 then timepoint = 0; 
 if _n_ = 2 then timepoint = 0.5; 
 if _n_ = 3 then timepoint = 2; 
 if _n_ = 4 then timepoint = 5; 
 if _n_ = 5 then timepoint = 7; 
 if _n_ = 6 then timepoint = 9; 
 if _n_ = 7 then timepoint = 12; 
 
%macro rungene(genenum); 
 proc loess data=lib.chuformattedtransposed2; 
  model col&genenum = timepoint /degree=2; 
  ods output outputstatistics=work.results; 
 
 %if &genenum=1 %then %do; 
  data combined; 
   set work.results; 
   drop smoothingparameter obs depvar pred; 
 %end; 
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 data temp; 
  set work.results; 
  drop smoothingparameter obs timepoint; 
 
 data combined; 
  merge combined temp; 
  drop depvar; 
  rename pred = pred&genenum; 
%mend; 
 
%macro doit(num); 
 %do i = 1 %to &num; 
  %rungene(&i); 
 %end; 
%mend; 
 
ods listing close; 
%doit(6118); 
ods listing; 
 
proc contents data=work.combined; 
 
data lib.loessdata; 
 set work.combined; 
 
*proc print data=work.combined; 
run; 
 
 
2.2 SAS Code for Calculating LOESS Smoothed Profiles 
 
/* LOESS Smoothed Ratio Profiles */ 
 
options nodate;  
  
libname lib 'c:\eric\clusterpaper\chu\log10ratioprofile\'; 
 
%macro runprofile(profilenum); 
 proc loess data=lib.profiles1; 
  model col&profilenum = col8 /degree=2; 
  ods output outputstatistics=work.results; 
 
 %if &profilenum=1 %then %do; 
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  data combined; 
   set work.results; 
   drop smoothingparameter obs depvar pred; 
 %end; 
 
 data temp; 
  set work.results; 
  drop smoothingparameter obs col8; 
 
 data combined; 
  merge combined temp; 
  drop depvar; 
  rename pred = pred&profilenum; 
%mend; 
 
%macro doit(num); 
 %do i = 1 %to &num; 
  %runprofile(&i); 
 %end; 
%mend; 
 
%doit(7); 
 
data lib.profiles2; 
 set work.combined; 
 rename col8 = timepoint; 
 
proc print data=lib.profiles2; 
 
run; 
 
 
2.3 SAS Code for Performing LOESS Smoothed Filtering 
 
options nodate; 
 
libname lib 'c:\eric\clusterpaper\chu\log10ratioprofile\'; 
 
data lib.loessdata2; 
 set lib.loessdata; 
 
data work.profiles2temp; 
 set lib.profiles2; 
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 rename pred1=col1 pred2=col2 pred3=col3 pred4=col4 pred5=col5 pred6=col6 
pred7=col7; 
 
%macro rungene(genenum); 
 data work.temp; 
  set lib.loessdata2; 
  drop timepoint; 
   
 proc transpose data=work.temp out=work.temp2; 
 
 data work.temp3; 
  set work.temp2; 
  drop _name_ _label_; 
  if (_N_ ^= &genenum) then delete; 
 
 proc transpose data=work.temp3 out=work.temp4; 
 
 data work.temp5; 
  set work.temp4; 
  rename col1 = gene&genenum; 
  drop _name_; 
   
 data work.merged; 
  merge work.temp5 work.profiles2temp; 
 
 proc corr data=work.merged pearson outp=work.pearson noprint; 
 
  var gene&genenum col1 - col7; 
 
 data work.temp6; 
  set work.pearson; 
  drop _name_ _type_ col1-col7; 
  if (_n_ < 5) then delete; 
 
 data work.corr; 
  set work.temp6; 
   
 %if &genenum=1 %then %do; 
  data combined; 
   set work.corr; 
 %end; 
 
 data work.combined; 
  merge work.combined work.corr; 
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%mend; 
 
%macro doit(num); 
 %do i = 1 %to &num; 
  %rungene(&i); 
 %end; 
%mend; 
 
%doit(6118); 
 
proc transpose data=work.combined out=work.combined2; 
 
data lib.filtered2; 
 set work.combined2; 
 
proc print data=lib.filtered2; 
 
run; 
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Chapter 3 Appendices 
 
3.1 SAS Code for Comparing Clustering Methods 
 
libname lib 'c:\eric\comparingclusters\'; 
 
filename clusterA 'c:\eric\comparingclusters\keuc.txt'; 
data work.clusterA; 
 infile clusterA dlm='09'x; 
 input id cluster; 
 
filename clusterB 'c:\eric\comparingclusters\kp.txt'; 
data work.clusterB; 
 infile clusterB dlm='09'x; 
 input id cluster; 
 
proc iml; 
 start sortmat(mat,len); 
  sorted = 0; 
  do while(sorted = 0); 
   sorted = 1; 
   do j = 1 to len-1; 
    if mat[j,1] > mat[j+1,1] then 
     do; 
      temp       = mat[j,1]; 
      mat[j,1]   = mat[j+1,1]; 
      mat[j+1,1] = temp; 
      temp       = mat[j,2]; 
      mat[j,2]   = mat[j+1,2]; 
      mat[j+1,2] = temp; 
      sorted             = 0; 
     end; 
   end; 
  end; 
  return(mat); 
 finish sortmat; 
 
 use work.clusterA; 
 read all into clusterA; 
 close work.clusterA; 
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 use work.clusterB; 
 read all into clusterB; 
 close work.clusterB; 
 
 n  = 60;  /* number of items clustered */ 
 nc = 9;  /* number of clusters        */ 
 
 /* direct comparison taking cluster labels at face value */ 
 naive = j(n,2,0); 
 do i = 1 to n; 
  naive[i,1] = clusterA[i,2];   
  naive[i,2] = clusterB[i,2]; 
 end; 
 create work.naive from naive; 
 append from naive; 
 
 /* comparison based on rankings of cluster sizes */ 
 sortA = j(nc,2,0); 
 do i = 1 to nc; 
  sum = 0; 
  do j = 1 to n; 
   if clusterA[j,2] = i then sum = sum + 1; 
  end; 
  sortA[i,1] = sum; 
  sortA[i,2] = i; 
 end; 
 sortA = sortmat(sortA,nc); 
  
 sortB = j(nc,2,0); 
 do i = 1 to nc; 
  sum = 0; 
  do j = 1 to n; 
   if clusterB[j,2] = i then sum = sum + 1; 
  end; 
  sortB[i,1] = sum; 
  sortB[i,2] = i; 
 end; 
 sortB = sortmat(sortB,nc); 
 
 sorted = naive; 
 do i = 1 to nc; 
  do j = 1 to n; 
   if (naive[j,1] = sortA[i,2]) then sorted[j,1] = i; 
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   if (naive[j,2] = sortB[i,2]) then sorted[j,2] = i; 
  end; 
 end;   
 create work.sorted from sorted; 
 append from sorted; 
 
 /* best case scenario */ 
 agreemat = j(nc,nc,0); 
 do i = 1 to nc; 
  do j = 1 to nc; 
   do k = 1 to n; 
    if ((naive[k,1] = i) & (naive[k,2] = j)) then agreemat[i,j] = 
agreemat[i,j] + 1; 
   end; 
  end; 
 end; 
   
 newclusters = j(nc,2,0); 
 index = 1; 
 do j = 1 to nc; 
  big = -1; 
  do i = 1 to nc; 
   if (agreemat[i,j] > big) then  
    do; 
     big      = agreemat[i,j]; 
     xcluster = j; 
     ycluster = i; 
    end; 
  end; 
  newclusters[index,1] = ycluster; 
  newclusters[index,2] = xcluster; 
  index = index + 1; 
  do l = 1 to nc; 
   agreemat[ycluster,l] = -1; 
  end; 
 end; 
 
 bestcase = naive; 
 do i = 1 to nc; 
  do j = 1 to n; 
   if (naive[j,1] = newclusters[i,1]) then bestcase[j,1] = 
newclusters[i,2]; 
  end; 
 end;   
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 create work.bestcase from bestcase; 
 append from bestcase; 
 
 agreemat2 = j(nc,nc,0); 
 do i = 1 to nc; 
  do j = 1 to nc; 
   do k = 1 to n; 
    if ((bestcase[k,1] = i) & (bestcase[k,2] = j)) then 
agreemat2[i,j] = agreemat2[i,j] + 1; 
   end; 
  end; 
 end; 
 saveagreemat = agreemat2; 
 
 /* Rand index */ 
 /* 
 sample = {1 1 0, 1 2 1, 0 0 4}; 
 sample = {0 0 50, 2 47 0, 36 15 0}; 
 print sample; 
 nc1  = 3; 
 nc2  = 3; 
 ntot = sample[+,+]; 
 */ 
 sample = saveagreemat; 
 nc1    = nc; 
 nc2    = nc; 
 ntot   = sample[+,+]; 
  
 sum1 = comb(ntot,2); 
 sum2 = 0; 
 do i = 1 to nc1; 
  do j = 1 to nc2; 
   val  = sample[i,j]; 
   if (val >= 2) then sum2 = sum2 + comb(val,2); 
  end; 
 end; 
 A = sum2; 
 sum3 = 0; 
 do i = 1 to nc1; 
  val  = sample[i,+]; 
  if (val >= 2) then sum3 = sum3 + comb(val,2); 
 end; 
 B = sum3 - sum2; 
 sum4 = 0; 
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 do j = 1 to nc2; 
  val  = sample[+,j]; 
  if (val >= 2) then sum4 = sum4 + comb(val,2); 
 end; 
 C = sum4 - sum2; 
 D = sum1 - A - B - C; 
 rand = (A + D) / sum1; 
 print rand; 
 
 /* adjusted Rand index */ 
 /* 
 sample = {1 1 0, 1 2 1, 0 0 4}; 
 sample = {0 0 50, 2 47 0, 36 15 0}; 
 nc1  = 3; 
 nc2  = 3; 
 ntot = sample[+,+]; 
 */ 
 sample = saveagreemat; 
 nc1    = nc; 
 nc2    = nc; 
 ntot   = sample[+,+]; 
  
 sum1 = 0; 
 do i = 1 to nc1; 
  do j = 1 to nc2; 
   val = sample[i,j]; 
   if (val >= 2) then sum1 = sum1 + comb(val,2); 
  end; 
 end; 
 sum2 = 0; 
 do i = 1 to nc1; 
  val = sample[i,+]; 
  if (val >=2)then sum2 = sum2 + comb(val,2); 
 end; 
 sum3 = 0; 
 do j = 1 to nc2; 
  val = sample[+,j]; 
  if (val >=2) then sum3 = sum3 + comb(val,2); 
 end; 
 bign = sum1  - (sum2*sum3)/comb(ntot,2); 
 
 sum4 = 0; 
 do i = 1 to nc1; 
  val = sample[i,+]; 
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  if (val >= 2) then sum4 = sum4 + comb(val,2); 
 end; 
 sum5 = 0; 
 do j = 1 to nc2; 
  val = sample[+,j]; 
  if (val >= 2) then sum5 = sum5 + comb(val,2); 
 end; 
 bigd = (sum4 + sum5)/2 - (sum2*sum3)/comb(ntot,2); 
 adjrand = bign / bigd; 
 print adjrand; 
  
 print saveagreemat; 
 quit; 
 
/* naive comparison */ 
proc freq data=work.naive; 
 tables col1*col2 / agree nopercent norow nocol nocum; 
 
/* ranked comparison */ 
proc freq data=work.sorted; 
 tables col1*col2 / agree nopercent norow nocol nocum; 
 
/* best case comparison */ 
proc freq data=work.bestcase; 
 tables col1*col2 / agree nopercent norow nocol nocum; 
 
run; 
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Chapter 4 Appendices 
 
4.1 Derivation of the EM Algorithm Formulas for the One Dimensional Normal 

Mixture Model 
 
Notation: 
 

iy  = the observations indexed by i 
C = the number of mixture components 
N = the number of observations 

ikα   = the posterior probability of the thi  observation falling in the thk  group 

kπ   = the proportion of observations falling in the thk  group 

kµ   = the thk  group mean 
2
kσ   = the thk  group variance. 

 
Definitions: 
 
The normal mixture model distribution: 
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The likelihood for the N observations: 
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The posterior probability estimate, ikα , is found by taking a weighted average of the C 
component densities.  The formula for ikα  is: 
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The estimates of the posterior probability, ikα , are used to simplify the maximum 
likelihood estimates for the parameters.  The MLE’s are calculated in the usual way by 
taking the first derivatives of the log likelihood, setting them equal to zero, and solving.  
The derivations are shown below. 
 
 
The estimate of kπ  is found by taking the first derivative of  with respect to kπ , 
setting it equal to 0, and solving the resulting equation for kπ  under the constraint 
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Substituting for ikα yields: 
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Adding up the C-1 equations and solving yields: 
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This is equivalent to: 
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The estimate of kµ  is found by taking the first derivative of  with respect to kµ , 
setting it equal to 0, and solving the resulting equation for kµ . 
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Substituting for ikα  and solving yields: 
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The estimate of 2

kσ  is found by taking the first derivative of  with respect to 2
kσ , 

setting it equal to 0, and solving the resulting equation for 2
kσ . 
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Solving this equation yields: 
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In the homogeneous variance case, 2σ  is found by first estimating all of the 2

kσ ’s and 
then taking a weighted average of these estimates. 
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4.2 SAS Code for Simulating a C-Component Normal Mixture Distribution 
 
/* simulates a C component normal mixture distribution */ 
 
/* CHANGE THIS */ 
libname lib 'c:\eric\dissertation\chapter 4 supporting material\'; 
 
proc iml; 
 seed   = 23112;   /* seed for random number generator */ 
 
 /* CHANGE THIS */ 
 n      = 10000;   /* number of observations to be generated */ 
 nc     = 2;    /* number of clusters*/ 
 
 p = j(nc,1,0);   /* mixture proportions */ 
    mus = j(nc,1,0);  /* holds mus for mixture distribution */ 
 vars = j(nc,1,0);  /* holds variances for mixture distribution */ 
 sim = j(n,2,0);      /* holds simulated values (i, x) format */ 
 
 /* Simulation Parameters */ 
 /* CHANGE THESE */ 
 p[1,1] = 0.3; 
 p[2,1] = 0.7; 
  
 mus[1,1] = 5; 
 mus[2,1] = 10; 
 
 vars[1,1] = 2; 
 vars[2,1] = 4; 
 
  
 /* simulate the mixture data using appropriate proportions */ 
 do k = 1 to n; 
  choice = ranuni(seed); 
  left   = 0; 
  right  = p[1,1]; 
  if (choice < right) then 
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∑ ∑
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   do; 
    i = 1; 
    mu    = mus[1,1]; 
    var   = vars[1,1]; 
    sig   = sqrt(var); 
    x     = sig*rannor(seed) + mu;  
    sim[k,1] = i; 
    sim[k,2] = x; 
   end; 
  else 
      do m = 2 to nc; 
    left  = left  + p[m-1,1]; 
    right = right + p[m,1]; 
    if ((choice > left) & (choice < right)) then 
     do; 
      i = m; 
      mu    = mus[m,1]; 
      var   = vars[m,1]; 
      sig   = sqrt(var); 
      x     = sig*rannor(seed) + mu;  
      sim[k,1] = i; 
      sim[k,2] = x; 
     end; 
   end; 
 end; 
 
 /* output parameters and simulated data */ 
 print p; 
 print mus; 
 print vars; 
  
 /* CHANGE THIS */ 
 filename out 'c:\eric\dissertation\chapter 4 supporting material\simdata.dat'; 
    file out; 
 do i = 1 to n; 
  put (sim[i,2]); 
 end; 
 closefile out; 
  
 create lib.sim from sim; 
 append from sim; 
 
 quit; 
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proc print data=lib.sim; 
 
run; 



 263
 
 
 
 

Chapter 5 Appendices 
 
5.1 Derivation of the Conditional Mixture Distribution  
 
Notation: 
 

ijx  = the data point indexed by (i, j) 
C   = the number of mixture components for the rows 

*C  = the number of mixture components for the columns 
f  = the mixture distribution for the rows 
g = the mixture distribution for the columns 
N  = the number of rows of data 

*N  = the number of columns of data 

ijklα   = the posterior probability of the ( ), thi j  observation falling in the ( ), thk l  group 

kπ   = the proportion of observations falling in the thk  group 

lψ   = the proportion of observations falling in the thl  group 

kjµ   = the thk  group mean which changes with the column number, j 

klτ   = the ( ), thk l  group mean 

kσ   = the thk  group standard deviation 

lτσ  = the thl  group standard deviation 
 
 
The normal mixture distribution for the rows is: 

( )2
|

1 1
;  , .ij kj

C C
k x k ij kj k

k k
f f yµπ π φ µ σ

= =
= =∑ ∑  

 
The normal mixture distribution for the columns is: 
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The distribution of the conditional mixture is derived below. 
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5.2 Derivation of the EM Algorithm Formulas for the Two Dimensional Normal 

Mixture Model 
 
Notation: 
 

ijy  = the observations indexed by i (rows) and j (columns) 
C = the number of mixture components across rows 

*C  = the number of mixture components across columns 
N = the number of rows of data 

*N  = the number of columns of data 

ijklα   = the posterior probability of the ( , )thi j  observation falling in the ( , )thk l  group 

klπ   = the proportion of observations falling in the ( , )thk l  group 

klτ   = the ( , )thk l  group mean 
2
klσ   = the ( , )thk l  group variance. 

 
Definitions: 
 
The normal mixture model distribution: 
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The likelihood for the *NN  observations: 
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The log likelihood for the *NN  observations with the global restriction 
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The posterior probability estimate, ijklα , is found by taking a weighted average of the 

*CC  component densities.  The formula for ijklα  is: 
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The estimates of the posterior probability, ijklα , are used to simplify the maximum 
likelihood estimates for the parameters.  The MLE’s are calculated in the usual way by 
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taking the first derivatives of the log likelihood, setting them equal to zero, and solving.  
The derivations are shown below. 
 
 
The estimate of klπ  is found by taking the first derivative of  with respect to klπ , 
setting it equal to 0, and solving the resulting equation for klπ  under the constraint 
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Substituting for ijklα yields: 
 

* *
* *

*
* *

*

.. ..
.. ..

1 1 1 1
     

1 0
N N C Cijkl ijCC kl CC

kl kl klCCkl kli j k lCC CC
kl CC

α αα α
α π α π

π π π π= = = =
≠

 
  
  − = − = − − =
  

   
 

∑ ∑ ∑∑  

 
Adding up the *( 1)C C −  equations and solving yields: 
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This is equivalent to: 
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The estimate of klτ  is found by taking the first derivative of  with respect to klτ , 
setting it equal to 0, and solving the resulting equation for klτ . 
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Substituting for ijklα  and solving yields: 
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The estimate of 2

klσ  is found by taking the first derivative of  with respect to 2
klσ , 

setting it equal to 0, and solving the resulting equation for 2
klσ . 
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Solving this equation yields: 
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In the homogeneous variance case, 2σ  is found by first estimating all of the 2

klσ ’s and 
then taking a weighted average of these estimates. 
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5.3 Derivatives for the Calculation of Two Dimensional Posterior Probability 

Confidence Intervals 
 
 
The derivative of  ijklα  with respect to klπ  is: 
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The derivative of  ijklα  with respect to klτ  is: 
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The derivative of  ijklα  with respect to klσ  is: 
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5.4 SAS Code for Simulating a Two Dimensional Normal Mixture Distribution 
 
/* simulates 2 dimensional normal mixture distribution */ 
 
/* CHANGE THE LIBRARY PATH */ 
libname lib  'C:\eric\dissertation\chapter 5 supporting material\4 x 5 simulation\'; 
proc iml; 
 seed   = 2003;    /* seed for random number generator */ 
 n      = 1000;   /* number of observations to be generated */ 
 nc1    = 4;   /* number of clusters in dimension 1 */ 
 nc2    = 5;    /* number of clusters in dimension 2 */ 
 nsim   = 1;   /* number of simulations - set to 1 for single run */ 
 
 p = j(nc1,1,0);   /* dimension 1 mixture proportions */ 
 q = j(nc2,1,0);    /* dimension 2 mixture proportions */ 
 pq = j(nc1,nc2,0);  /* 2 dimensional mixture proportions */ 
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 taus = j(nc1,nc2,0); /* taus for 2 dimensional mixture component distributions 
*/ 
 sigs = j(nc1,nc2,0); /* sigmas for 2 dimensional mixture component 
distributions */ 
 sim = j(n*nsim,6,0); /* holds simulated values (i, j, x) format */ 
 
 /* Simulation Parameters */ 
 /* CHANGE THESE */ 
 
 start = 5; 
 do i = 1 to nc1; 
  do j = 1 to nc2; 
   taus[i,j] = start; 
   start = start + 5; 
  end; 
 end; 
   
 start = 1; 
 do i = 1 to nc1; 
  do j = 1 to nc2; 
   sigs[i,j] = sqrt(start); 
   start = start + 1; 
  end; 
 end; 
  
 p[1,1] = 0.6; 
 p[2,1] = 0.1; 
 p[3,1] = 0.15; 
 p[4,1] = 0.15; 
   
 q[1,1] = 0.4; 
 q[2,1] = 0.2; 
 q[3,1] = 0.1; 
 q[4,1] = 0.15; 
 q[5,1] = 0.15; 
  
 /* Calculate 2 dimensional mixture proportions */ 
 props = j(nc1*nc2,3,0); /* i, j, p */ 
 index = 1; 
 do i = 1 to nc1; 
  do j = 1 to nc2; 
   pq[i,j] = p[i,1]*q[j,1]; 
   props[index,1] = i; 
   props[index,2] = j; 
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   props[index,3] = pq[i,j]; 
   index = index + 1; 
  end; 
 end; 
 
 /* simulate the 2 dimensional mixture data using appropriate proportions */ 
 k = 1; 
 do simnum = 1 to nsim; 
 do a = 1 to 10; 
  do b = 1 to 100; 
  
  choice = ranuni(seed); 
  left   = 0; 
  right  = props[1,3]; 
  if (choice < right) then 
   do; 
    i = props[1,1]; 
    j = props[1,2]; 
    tau    = taus[i,j]; 
    sig    = sigs[i,j]; 
    x        = sig*rannor(seed) + tau;  /* f(xij|mu) = N(mu,sig) */ 
    sim[k,1] = i; 
    sim[k,2] = j; 
    sim[k,3] = x; 
    sim[k,4] = 1; 
    sim[k,5] = a; 
    sim[k,6] = b; 
   end; 
  else 
   do m = 2 to (nc1*nc2); 
    left  = left  + props[m-1,3]; 
    right = right + props[m,3]; 
    if ((choice > left) & (choice < right)) then 
     do; 
      i = props[m,1]; 
      j = props[m,2]; 
      tau    = taus[i,j]; 
      sig    = sigs[i,j]; 
      x        = sig*rannor(seed) + tau;  /* f(xij|mu) 
= N(mu,sig) */ 
      sim[k,1] = i; 
      sim[k,2] = j; 
      sim[k,3] = x; 
      sim[k,4] = m; 
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      sim[k,5] = a; 
      sim[k,6] = b; 
     end; 
   end; 
   k = k + 1; 
  end; 
 end; 
 end; 
 
 /* output parameters and simulated data */ 
 print props; 
 print taus; 
 print sigs; 
 
 /* calculate and output expected value */ 

expectval = 0; 
 do i = 1 to nc1; 
  do j = 1 to nc2; 
   expectval = expectval + pq[i,j]*taus[i,j]; 
  end; 
 end; 
 print expectval; 

expectvar = 0; 
 do i = 1 to nc1; 
  do j = 1 to nc2; 
      expectvar = expectvar + pq[i,j]*(taus[i,j]**2 + sigs[i,j]**2); 
  end; 
 end; 
            expectvar = expectvar - expectval**2; 
 print expectvar; 
  
 /* CHANGE THE FILE PATH */ 
 filename out 'C:\eric\dissertation\chapter 5 supporting material\4 x 5 
simulation\simdata.dat'; 
    file out; 
 do i = 1 to n; 
  put (sim[i,3]); 
 end; 
 closefile out; 
 
 create lib.sim from sim; 
 append from sim; 
quit; 
run; 
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5.5 List of the 429 Genes Selected from Ross et al. (2000) Data Set 
 

AA011608 AA019718 AA019818 AA026911 AA033566 AA040702
AA044444 AA052987 AA053379 AA053413 AA053629 AA055477
AA055794 AA057618 AA057760 AA058541 H77542 N55093 
N93414 W05361 W37533 W46396 W80489 W93388 
AA001722 AA019164 AA025473 AA032095 AA034315 AA035384
AA035528 AA044439 AA053637 AA057384 H68937 H88060 
N36777 N59231 N67639 N90435 N98611 W81517 
W90021 AA018766 AA034050 AA044444 AA053413 AA053629
AA058541 H67775 H75535 N63143 N95053 R38619 
R54011 R79944 W37533 W90417 W90633 AA007625
AA025547 AA026911 AA027090 AA031697 AA040872 AA043211
AA055481 AA057196 AA058529 N29759 N95169 T40987 
W74235 W89012 W93355 AA031375 H01224 N23665 
N65943 W73070 AA004674 AA026921 AA029558 AA034221
AA035404 AA037369 AA037371 AA037770 AA040875 AA040928
AA043188 AA043745 AA044596 AA045330 AA045811 AA045978
AA046035 AA046423 AA047247 AA054290 AA055764 H73006 
N92990 W73368 W90071 AA029558 AA031478 AA034221
AA035255 AA035404 AA037788 AA044100 AA046423 AA046701
AA047042 AA047247 AA055644 AA055764 N92990 W73368 
AA025679 AA037689 AA053546 AA055467 AA055540 N35315 
R94927 W69491 W80357 AA026222 AA028001 AA028094
AA031493 AA035372 AA035645 AA037353 AA045032 AA045090
AA046063 AA046312 AA047261 AA047372 AA053076 AA053558
AA055077 AA055408 AA056738 H85095 H95849 N20225 
N63511 N70518 N72074 N78838 N80723 N93479 
R52703 R59373 W44416 W46479 W79419 W86907 
AA007652 AA009800 AA019922 AA025243 AA029097 AA035619
AA042879 AA044930 AA046316 AA047408 AA056232 H17086 
H68549 N90435 N99964 W02680 W80458 AA004292
AA004931 AA005215 AA025275 AA029438 AA031831 AA031961
AA034172 AA035186 AA035508 AA039344 AA039599 AA040161
AA040777 AA040878 AA041299 AA043504 AA043755 AA044077
AA046521 AA047268 AA047324 AA047462 AA047679 AA052906
AA053225 AA056204 AA056470 AA057359 AA057728 AA058523
AA058997 H12764 H26976 H52664 N27930 N36901 
N48061 N58770 N58838 N66100 N66376 N67168 
N68633 N72265 N79519 N95301 N98775 R06755 
R11631 R16808 R42435 R43524 R90842 T40568 
T51244 T95619 W23729 W37431 W42423 W42587 
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W47128 W49593 W69354 W69649 W73035 W74500 
W80587 W84728 W90762 W92696 W93379 AA010417
AA035619 N51716 N54791 N74888 R48613 W85726 
AA046018 AA053461 AA056394 W69491 W80357 AA010561
AA025594 AA025800 AA027277 AA032074 AA032096 AA033563
AA033850 AA035236 AA040535 AA045480 AA045739 AA045881
AA046047 AA046709 AA052985 AA053077 AA053116 AA053169
AA053308 AA053681 AA055732 AA056469 AA056611 AA057535
AA057546 AA057604 AA057638 AA057670 AA057732 AA057821
AA057826 AA058319 AA058350 AA058366 AA058368 AA284246
H16800 H30650 H40135 N33200 N64544 N94490 
R51086 W15407 W72115 W87396 W95362 W95649 
AA028001 AA031493 AA035372 AA045032 AA047372 AA053558
H85095 N20225 N72074 N78838 N80723 W46479 
W79419 AA017566 AA031701 AA039330 N53668 N73082 
W94196 AA029560 AA029723 AA031265 AA035579 AA042981
AA043237 AA045877 AA052950 AA053371 H61739 N62998 
W05368 W73690 W73776 W74535 W90478 AA026089
AA034172 AA040878 AA044233 AA047324 AA058523 N66100 
R16808 R20750 W37431 W49593 W78128 W93802 
W96210 AA001916 AA026796 AA029438 AA039640 AA040617
AA045192 AA045874 AA055196 AA055664 AA059306 H14343 
H50438 H52664 H56186 H59260 H62385 H65189 
N30606 N66521 N72115 N74420 N90191 N94440 
N94499 R73421 R80235 R83277 W42414 W42423 
W73785 W74500 W80586 W86050 W95001 W95471 
AA026207 AA031671 AA034172 AA035186 AA036724 AA040878
AA044233 AA046521 AA047243 AA053271 AA054226 AA056204
AA057736 AA058523 H23728 N77814 N95176 R11631 
R16808 W45726 W69649 W92047 W93802 AA022690
AA041299 AA054312 AA056468 H22978 H29200 N49221 
R44253 W04723 W92696    
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5.6 173 Observation Zero Variance Cluster 
 

Gene Cell Gene Cell Gene Cell Gene Cell
AA011608 20 AA037369 57 AA043755 20 N20225 7 
AA026911 26 AA037371 37 AA047268 28 W46479 20 
AA052987 6 AA043745 32 AA047268 45 AA031701 5 
W05361 5 AA055764 4 AA053225 42 AA031701 28 
W80489 16 H73006 29 AA056204 28 AA029560 56 
W80489 24 N92990 29 AA057728 34 AA029723 56 
W80489 36 W73368 29 N66100 2 AA031265 56 
AA001722 27 AA035255 7 N72265 13 AA053371 44 
AA032095 18 AA035255 54 R11631 31 W73690 54 
AA035528 18 AA047042 33 R16808 31 AA026089 15 
AA044439 18 AA047247 47 R42435 31 AA034172 20 
AA057384 28 W73368 8 R90842 43 N66100 56 
H68937 49 AA028001 9 T40568 43 R16808 48 
H88060 38 AA028001 19 T51244 13 W37431 46 
N36777 38 AA028094 58 W23729 29 W78128 33 
N90435 12 AA035372 19 W37431 20 AA039640 34 
N98611 12 AA045090 14 W37431 40 AA045874 22 
AA018766 7 AA047261 24 W42587 15 AA059306 7 
AA018766 8 AA053076 19 W47128 18 H56186 13 
AA018766 19 AA053558 19 W47128 40 H59260 13 
H75535 60 H85095 50 W73035 38 H62385 59 
N63143 4 N72074 52 W84728 18 N74420 58 
R38619 16 R52703 55 N54791 29 N94499 19 
W90417 53 R59373 55 AA027277 54 N94499 30 
AA025547 37 W44416 27 AA032074 54 N94499 42 
AA026911 7 W46479 35 AA040535 2 R73421 19 
AA026911 35 AA019922 53 AA045881 38 R73421 30 
AA043211 25 AA035619 24 AA046709 14 R73421 42 
AA043211 41 AA035619 53 AA052985 5 AA040878 3 
AA055481 25 AA042879 23 AA053116 47 AA040878 32 
AA055481 41 AA044930 10 AA056469 9 AA047243 40 
AA057196 52 AA044930 46 AA057535 59 AA057736 15 
AA058529 19 AA044930 60 AA057604 59 H23728 54 
N29759 19 AA046316 28 AA057638 9 N77814 15 
T40987 26 AA056232 16 AA057638 47 N77814 32 
T40987 32 AA056232 44 AA057670 9 N95176 20 
W74235 10 AA056232 58 AA057670 47 R11631 20 
W89012 10 H68549 53 AA057821 49 AA022690 12 
AA031375 31 N90435 53 AA058350 42 N20225 7 
H01224 31 W80458 39 H30650 27   
N23665 59 AA004292 39 N33200 15   
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AA004674 8 AA031831 40 N94490 41   
AA026921 8 AA034172 2 W87396 21   
AA035404 13 AA039599 11 W95362 21   
AA035404 44 AA041299 29 N20225 2   
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2-d.1 Introduction 
 

2-DCluster was written to support the fitting of two dimensional normal mixture 

models, although one dimensional normal mixture models are also supported.  The two 

dimensional mixture model is developed in Eric Harvey’s dissertation available electronically 

at http://etd.vcu.edu.  Two dimensional mixture models occur when the data can be represented 

in a grid with categorical labels across both axes.  Clustering such data in one dimension 

requires the data to be collapsed across the opposite dimension. This data reduction results in a 

loss of information.  Two dimensional mixture models use both dimensions of the data 

simultaneously to estimate the parameter values.  2-DCluster was developed on a Microsoft 

Windows XP machine and has been tested on Windows 2000 and Windows Me machines.  

Microsoft Visual Basic version 6.0 and Lahey Fortran 95 version 5.7 were used to develop 2-

DCluster.  The source code is available at http://etd.vcu.edu and requires the Wisk library 

(www.lahey.com) to compile.  2-DCluster requires at least 5 megabytes of RAM to run, and 

more memory is required for large data sets.  Every effort was made to make 2-DCluster as 

efficient as possible. 

 
2-d.2 Algorithm Description 

Maximum likelihood based methods are used to estimate the two dimensional normal 

mixture model parameters.  The Expectation/Maximization algorithm is an iterative method 

used for estimation.  Each cluster requires the estimation of a proportion, a mean, and a 

variance.  Each observation has an estimated posterior probability of belonging to every 

cluster.  A hybrid method which uses both the Netwon Raphson and 

Expectation/Maximization algorithms is also available.  This algorithm was proposed by 
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Aitkin and Aitkin (1996).  For two dimensional clustering, each observation is indexed by a 

row number and a column number.   Further details on the algorithm are given in Eric 

Harvey’s dissertation available electronically at http://etd.vcu.edu. 

 
2-d.3 Program Installation 

 2-DCluster is distributed in one of two ways.  For the CD’s included with the bound 

dissertation copies, the 2-DCluster installation is the same as for a regular windows program.  

Insert the CD and run setup.exe.  Follow the prompts to choose an installation directory and 

program group name.  Run 2-DCluster by clicking the 2-DCluster icon in the 2-DCluster 

program group. 

 For downloaded copies of 2-DCluster (available at http://etd.vcu.edu), the installation 

files are contained in a self extracting archive file called 2dCinstall.exe.  Copy this file to a 

temporary directory and run it.  You will be prompted for a directory name to extract the files 

to.  You may choose any directory you like.  Once the files are extracted, change directories to 

the one which the files were extracted to.  Double click on the file setup.exe to install 2-

DCluster.  You will be prompted for the installation directory for the program.  Follow the 

operating system prompts.  You will be informed when installation is complete.   

   
NOTE: You may be prompted to update your system files.  If this occurs, please cancel the 

setup and run Windows Update (accessible from Microsoft Internet Explorer) to update your 

system files.  After this is complete, re-run the 2-DCluster setup program.  The 2-DCluster 

distribution includes several example data files, as well as a documentation file named 

2dcluster.pdf.  An uninstall option is available in the 2-DCluster program group.  2-DCluster 



 284
requires the availability of Adobe Acrobat Reader and Microsoft Internet Explorer for live 

display of the documentation.  The export data feature requires Microsoft Excel to be installed. 

 
2-d.4 User Interface Description 

2-DCluster has a graphical user interface from which various parameters can be 

controlled.  The program is run by double clicking on the 2dcluster icon.  The startup screen is 

shown below.  Click Continue to proceed to the next screen. 

 

 

 
The main screen is shown below and allows the user to control a variety of settings. 
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Each of the options on the control screen shown above is now discussed.  The left hand 

column of options indicates where the data is located and where the files should be stored.  

Note that filenames containing the “_” character are not allowed.  The project path indicates 

the directory that you wish to store the project in.  The default directory is the directory in 

which 2-DCluster was installed.  The project base name indicates the project name.  Data files 

generated by 2-DCluster will be named projectbasename.EXT, where EXT represents the file 

extensions described below.  The project base name  defaults to PROJECT.  The data file name 

indicates the file in which the data to be analyzed is stored.  The format of the data file is 

described in Section 2-d.5.  If no filename is specified, it defaults to DATA.DAT in the project 

directory.  The starting value file indicates the file containing starting values for the algorithm.  

This box will not appear if the user requests k-means cluster or random starting values to be 

generated by 2-DCluster.  The format of the start value file is described in Section 2-d.5.  If no 

filename is specified, it defaults to STARTVALS.DAT.  

 Options in the right hand column allow algorithm parameters to be controlled.  The 

number of observations indicates the number of data points contained in the data file.  For 

program optimization, the number of observations is limited to 1,000,000.  If your application 

has more observations than this, the program can be recompiled with a higher limit.  The 

observation number corresponds to the row number in the data file from which the observation 

came.  The number of clusters must be pre-specified.  The default is  2 clusters.  The number 

of clusters per dimension is limited to 500, which should be adequate for most applications.  

The maximum number of EM algorithm iterations may be set.  If this is 0, the number of 

iterations is unlimited.  The desired confidence level, alpha, indicates the alpha level used in 
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calculating the confidence intervals.  The default confidence level is 0.05 which yields 95% 

confidence intervals.  This option is not available if confidence interval calculations are not 

requested.  The tolerance level may be chosen based on the required accuracy of the 

application.  The default value is 0.0000001 and is suitable for most applications.  Smaller 

tolerance values may be chosen, but may negatively affect the convergence rate.  If random 

starting values are requested, the number of random partitions to try may be specified.  The 

default value is 10 partitions.  2-DCluster selects the random partition having the minimal 

within cluster variance. 

 The selection boxes may be changed by clicking on them. The first selection box 

indicates whether the data are two dimensional.  Two dimensional data have a different file 

format, as discussed in Section 2-d.5.  The default value of this setting is YES.  The hybrid 

algorithm, as described by Aitkin and Aitkin (1996) , may be selected.  The default value of 

this is NO, which indicates that the ordinary EM algorithm is used.  Confidence intervals may 

be requested.  The default value for this is YES.  Starting values based on a k-means cluster 

analysis may be generated by 2-DCluster.  The default value for this is NO.  Starting values 

may also be randomly generated.  The default value for this is NO.  Only one method of 

generating starting values may be chosen at a time.  Finally, the variance estimates may be 

forced to be homogeneous if appropriate for the application.  The default value for this is NO. 

 The three buttons on the bottom are activated by clicking on them.  Run Algorithm 

starts the estimation process, View Documentation brings up a PDF version of this 

documentation file, and Quit stops the program.  If run algorithm is selected, the following 

screen is displayed. 
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This prompt indicates that the algorithm may take a while to converge.  Click OK to 

start the algorithm.  Once the algorithm converges, the following screen is displayed.  If “bad” 

starting values were chosen, a screen indicating a numerical underflow or overflow may be 

seen.  If this is the case, choose new starting values and/or algorithm control parameters and try 

again.  In general, the starting values generated using a k-means cluster analysis work.  

However, large numbers of clusters, random starting values may work better.  
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 The output window indicates the number of observations and the number of clusters 

requested.  The days, hours, minutes, seconds, and fractions of seconds are given in the 

algorithm run time output.  The number of EM and NR iterations to obtain convergence are 

indicated.  The number of NR iterations will be 0 unless the hybrid algorithm was selected.  

The log likelihood, Akaike information criterion (AIC), and Bayesian information criterion 

(BIC) for this model are indicated.  The expected value and variance is given for the 

observations (represented by the random variable y).  Clicking on parameter estimates gives 

the cluster specific parameter estimates.  An example of this is shown below. 

 

 

 
Clicking on posterior probabilities gives the posterior probability of each observation 

belonging to each cluster. An example of this is given below. 
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For both the parameter estimates and the posterior probability estimates, left clicking anywhere 

in the grid exports the estimates to a Microsoft Excel worksheet.  Quit terminates 2-DCluster.  

All of the estimates, including confidence intervals if requested, are output to files described in 

Section 2-d.5. 

 
2-d.5 Data File Formats 

All files referred to in this section are flat ASCII formatted files. 

 
Data File Format (User Generated) 

This file contains the observations to be clustered.  The default name for this file is 

DATA.DAT.  For unidimensional data, each line contains one observation.  For two 

dimensional data, each line contains the row number of the observation, the column number of 

the observation, and the observed value separated by spaces. 

 
Starting Value File Format (User Generated) 

 This file contains the starting values for the algorithm (if k-means or random starting 

values are not requested).  Starting values for the proportions of observations falling in a given 

cluster (π ), the cluster specific means (µ ), and  the cluster specific variances ( 2σ ) should be 

specified.  This file contains one line for each cluster and is organized as: 

 

1π   1µ   2
1σ  

 

Cπ   Cµ   2
Cσ  
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The number of clusters is indicated by C.  The C proportions should sum to 1.  The starting 

values for a given cluster are separated by spaces.  The default name for this file is 

STARTVALS.DAT. 

Parameter Estimate File Format (2-DCluster Generated) 

 The cluster specific parameter estimates are given in a file called projbasename.est.  

The default name for this file is PROJECT.EST.  The proportions of observations falling in a 

given cluster (π ), the cluster specific means (µ ), and  the cluster specific variances ( 2σ ) are 

reported.  This file contains one line for each cluster and is organized as: 

 

1π   1µ   2
1σ  

 

Cπ   Cµ   2
Cσ  

 
 

The number of clusters is indicated by C.  The C proportions should sum to 1.  The estimates 

for a given cluster are separated by spaces.   

 
Posterior Probability File Format (2-DCluster Generated) 

 The posterior probability estimates are given in a file called projbasename.pp.  The 

default name for this file is PROJECT.PP.  This file contains one number per line.  The first C 

lines give the posterior probabilities for observation 1, the second C lines give the posterior 

probabilities for observation 2, etc.  The number of clusters is indicated by C.  The C posterior 

probabilities for a given observation should sum to 1. 
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Confidence Intervals for Parameter Estimates File Format (2-DCluster Generated) 

 This file is only generated if confidence intervals are requested.  The filename is 

projbasenameparmcis.est.  This file contains one line for each cluster and is organized as: 

 

1π   1
Lπ   1

Uπ   1µ   1
Lµ   1

Uµ   2
1σ   2( )

1
Lσ   2( )

1
Uσ  

 

Cπ   L
Cπ   U

Cπ   Cµ   L
Cµ   U

Cµ   2
Cσ   2( )L

Cσ   2( )U
Cσ  

 
where #π  indicates the estimated proportion of observations falling in the cluster, #

Lπ and #
Uπ  

indicate the lower and upper confidence limits, #µ  indicates the estimated cluster specific 

mean with confidence limits specified by #
Lµ  and #

Uµ , and 2
#σ  indicates the estimated cluster 

specific variance with confidence limits specified by 2( )
#

Lσ  and 2( )
#

Uσ .  The # indicates the 

cluster number (which is the same as the line number).  All of the numbers are separated by 

spaces.  The number of clusters is indicated by C.  The C proportions should sum to 1.   

 
Confidence Intervals for Posterior Probability Estimates File Format  
(2-DCluster Generated) 
 
This file is only generated if confidence intervals are requested.  The filename is 

projbasenameppcis.est.  This file is organized as: 

 
1
1α   1

1
Lα   1

1
Uα  

 

1
Cα   1

CLα   1
CUα  

1
2α   1

2
Lα   1

2
Uα  
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2
Cα   2

CLα   2
CUα  

 
 

C
Cα   CL

Cα   CU
Cα  

 
where 1

1α  refers to the estimated posterior probability of observation 1 belonging to cluster 1 

with 1
1

Lα  and 1
1
Uα  being the upper and lower confidence limits, respectively.  The first C 

rows are the estimated posterior probabilities and confidence intervals for the first observation, 

the second C rows represent the same information for the second observation, etc.  The 

numbers are separated by spaces. 

 
Starting Values (2-DCluster Generated) 

 This file is only generated if k-means starting values are requested.  The file contains 

the k-means starting values generated by 2-DCluster.  The file is called projbasename.sv and 

contains one line for each cluster organized as: 

 

1π   1µ   2
1σ  

 

Cπ   Cµ   2
Cσ  

 

where π  proportion indicates the proportion of observations falling in the clusters, µ  indicates 

the cluster specific mean, and 2σ indicates the cluster specific variance.  The number of 

clusters is indicated by C.  The C proportions should sum to 1.  The staring values for a given 

cluster are separated by spaces.   
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Cluster Assignments (2-DCluster Generated) 

 This file indicates cluster assignments based on the maximum posterior probability for 

a given observation.  The file is called projbasename.ca.  Each line of the file contains the 

cluster number that the observation number (indicated by the row number of the file) is 

assigned.  The cluster numbering is arbitrary.   

 A second file called projbasename.nc is also generated.  This file contains one line for 

each of the C clusters.  Two numbers separated by spaces appear on each line. The first 

number is the number of observations that were assigned to this cluster based on the maximum 

posterior probability.  The second number is the proportion of observations assigned to this 

cluster.  The proportions of observations assigned to each cluster should closely match the 

estimated proportions for the cluster specific parameters. 

 
Other Files (2-DCluster Generated) 

 Two files are generated by 2-DCluster for internal use.  These filenames are 

2dcluster.prm and projbasename.s.  These files may be ignored by the user. 

 
2-d.6 Examples 

Schizophrenia One Dimensional Normal Mixture 

 The first example is a one dimensional two component normal mixture.  This data 

comes from a schizophrenia study reported by Levine (1981).  He collated the results of seven 

studies on the age of onset of schizophrenia.  Data was collected on 99 females and 152 males.  

(The analysis of the female data was used for the earlier screen shots.)  The idea behind fitting 

a two component normal mixture model is that there are two general groups of schizophrenics.  
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The first group is diagnosed at a younger age and generally suffer from a more severe form of 

the illness.  The second group is diagnosed later in life and generally has a less severe form of 

the illness.  This data and a complete analysis may be found in Everitt et al. (2001).  The 2-

DCluster package includes the data and starting values used by Everitt.   

 The data for females is analyzed first.  This data is found in women.dat and the starting 

values are in womenstartvals.dat.  Analyzing the data using a 2 x 1 normal mixture model in 2-

DCluster yields the results shown in the table below.  The results reported by Everitt et al. 

(2001) are given for comparison’s sake. 

 
Schizophrenia Data for 99 Women 

Parameter Initial Value Everitt Estimate 2-DCluster Estimate 2-DCluster 95% CIs
Proportion 0.5 0.74 0.74 (0.58, 0.89) 
Mean 1 25 24.80 24.80 (22.42, 27.18) 
Variance 1 10 42.75 42.75 (41.10, 44.40) 
Mean 2 50 46.45 46.45 (40.52, 52.38) 
Variance 2 10 49.90 49.90 (45.43, 54.37) 

 

Notice that 2-DCluster reproduced Everitt’s results.  The EM algorithm took 89 

iterations to converged and ran for less than a second.  The log likelihood value was -373.67,  

the AIC value was 757.34, and the BIC value was 770.31.  The expected value for the 

observations was 30.47 and the variance was 135.30.  The two groups have quite different 

mean ages.  Running the hybrid algorithm yielded the same results with 14 EM iterations and 6 

NR iterations.  The posterior probabilities and confidence intervals were also calculated but are 

not shown here. 
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The data for males is analyzed below.  The data is found in men.dat and the starting 

values are in menstartvals.dat.  Fitting the 2 x 1 normal mixture model in 2-DCluster yields the 

results shown in the table below. 

 

Schizophrenia Data for 125 Men 
Parameter Initial Value Everitt Estimate 2-DCluster Estimate 2-DCluster 95% CIs
Proportion 0.5 0.51 0.51 (0.34, 0.67) 
Mean 1 25 20.25 20.37 (19.36, 21.38) 
Variance 1 10 9.42 8.68 (7.68, 9.68) 
Mean 2 50 27.76 27.61 (24.24, 30.98) 
Variance 2 10 112.24 114.74 (112.73, 116.76) 

 

Notice that the 2-DCluster results closely match those reported by Everitt.  The EM 

algorithm took 131 iterations to converged and ran for less than a second.  The log likelihood 

value was -428.10, the AIC value was 866.21, and the BIC value was 880.35.  The expected 

value for the observations was 23.94 and the variance was 74.12.  The two groups have quite 

different mean ages.  The hybrid algorithm does not converge using these starting values.  

Notice that the average age of onset is earlier for the men than for the women.  This concurs 

with the results reported in the schizophrenia literature.  The posterior probabilities and 

confidence intervals were also calculated but are not shown here. 

 
Simulated Two Dimensional Normal Mixture Distribution 

 A five component two dimensional normal mixture is simulated and analyzed below.  

The starting values are generated using a k-means cluster analysis.  1000 observations are 

simulated using the parameters given below.  The data is contained in the file twod.dat. 
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Actual Parameters Parameter Estimates and 95% Confidence Intervals Cluster 

# π  µ  2σ  π  µ  2σ  
1 0.40 10.00 1.00 0.41 (0.38, 0.44) 10.05 (9.96, 10.15) 0.93 (0.87, 1.00)
2 0.20 20.00 2.00 0.21 (0.16, 0.26) 20.18 (20.00, 20.37) 1.89 (1.77, 2.01)
3 0.15 30.00 3.00 0.14 (0.12, 0.16) 30.07 (29.76, 30.38) 3.34 (3.12, 3.56)
4 0.10 40.00 4.00 0.09 (0.08, 0.11) 40.51 (40.10, 40.92) 3.50 (3.17, 3.82)
5 0.15 50.00 5.00 0.14 (0.12, 0.16) 50.16 (49.81, 50.50) 4.10 (3.81, 4.40)

 

The EM algorithm took 11 iterations to converged and ran for less than a second.  The 

log likelihood value was -3179.81,  the AIC value was 6387.63, and the BIC value was 

6456.34.  The expected value for the observations was 23.56 and the variance was 212.19.  

The estimates were very close to the actual values, and almost all of the 95% confidence 

intervals for the estimates contain the true values.  Running the hybrid algorithm yielded 

almost identical results in 6 EM iterations and 3 NR iterations.  The posterior probabilities and 

confidence intervals were also calculated but are not shown here. 

 
2-d.7 Usage Notes  

 The algorithms are iterative in nature and the convergence time depends on many 

issues such as the sample size, the number of clusters, the tolerance value, the starting values, 

etc.  The hybrid algorithm reduces the number of EM iterations required.  However, for many 

problems, a single NR iteration takes as long to run as several EM iterations.  For univariate 

problems, the hybrid algorithm generally converges more slowly than the EM algorithm.  We 

recommend using the EM algorithm for these types of applications. 

 Appropriate starting values can be difficult to find.  2-DCluster provides starting values 

based on the results of a k-means cluster analysis.  The EM algorithm often converges using 

these starting values.  2-DCluster also supports random starting values.  Random starting 



 297
values tend to result in convergence problems more frequently than the k-means starting 

values. 

 If there is no reason to suspect that the variances are different for the clusters, be sure to 

use the homogenous variance option.  This option forces all the variance estimates to be the 

same and can result in accelerated convergence times. 

 Calculating confidence intervals requires the inversion of a 3C-1dimensional matrix, 

where C is the number of clusters.  Models having substantial numbers of clusters require large 

matrices to be inverted, which can be very time consuming.  For such applications, we 

recommend that the confidence intervals not be calculated. 

 2-DCluster was developed on a display with 1280 x 1024 resolution.  Machines with 

lower resolution may have difficulty displaying the 2-DCluster graphical interface.  If this 

occurs, users should try to increase their screen resolution as much as possible. 

 The error trapping in 2-DCluster is rudimentary.  If you experience run time errors, 

please verify that the data files are in the format specified in Section 2-d.5.  For some starting 

values and data sets, numerical underflows or underflows may occur.  Most of these should be 

trapped.  However, due to the iterative nature of the algorithm, some may not be trapped.  In 

this situation, choosing new starting values or a smaller tolerance value generally allows the 

model to converge.  Better error messages will be included in a future version of 2-DCluster. 

 Due to numerical precision issues, confidence intervals may not be calculated correctly 

for the proportions and posterior probabilities for models having large numbers of clusters.  If 

confidence intervals are required for such a model, bootstrapping techniques could be 

employed.  Another option is to recompile the fortran code using the quadruple precision 
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option. This option doubles the precision of all operations involving real numbers, but 

sacrifices speed and increases memory requirements to do so. 

 2-DCluster includes the ability to run the same model multiple times using different 

data for input.  In order to use this option, run 2-DCluster for the first model in the usual 

manner.  Edit the file 2dcluster.prm in the 2-DCluster installation directory using any ASCII 

text editor.  The second to last line should be 1.  Change this number to the desired number of 

runs of the model and save the file.  The data format is the same as that described in Section 2-

d.5, with the data from the first model coming first, the data for the second model coming 

directly underneath, etc.  In a sense, the data for multiple models is “stacked”.  Instead of 

running 2-DCluster through the usual graphical interface, run the program em.exe.  Once the 

program terminates, the directory will contain the files described in Section 2-d.5 with a # 

appended to the file extension.  For example, the file containing parameter estimates for model 

one could be project.est1, the estimates for model two project.est2, etc. 

 
2-d.8 Author Contact Information 

The author wishes to thank Dr. Viswanathan Ramakrishnan for his help in developing 

2-DCluster.  The author may be contacted through the Department of Biostatistics at Virginia 

Commonwealth University or by email at eharvey@mail2.vcu.edu.  Dr. Ramakrishnan may be 

reached at vramesh@mail2.vcu.edu. Good luck with your research and please let us know if 

you have ideas for improving 2-DCluster. 
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